SIGGRAPH2012

The 39th International Conference and Exhibition on Computer Graphics and Interactive Techniques

Real-time Physically Based Rendering

- Make the entire rendering pipeline physically based (for current-gen consoles)
- Physically based
- shading models
- Physically based BRDF models
- lighting
- Quantities based on physics
- Film simulation (spectrum based tone-mapping)
- camera simulation
- Lens simulation based on real camera system

Modified Blinn-Phong Model

- A modified Blinn-Phong model

- Basic function
- Blinn-Phong for NDF (D)
- Schlick Approximation (F)
- Spherical Gaussian Approximation
- Neumann-Neumann GAF (G)
- Normalized specular component
- Fitted to a linear function
- Energy conservation
- Approximated for performance
- Details on "Physically Based Shading Models at tri-Ace" [SIGGRAPH 2010]

Our Physically Based Blinn-Phong

$$
L_{r}=\frac{R_{d}}{\pi}\left(1-F_{\text {diff }}\left(F_{0}\right)\right)+\frac{(n+2)}{4 \pi\left(2-2^{-\frac{n}{2}}\right)} \cdot \frac{F_{\text {spec }}\left(F_{0}\right)(N \cdot H)^{n}}{\max (N \cdot L, N \cdot E)}
$$

Our modified physically based Blinn-Phong model

$$
L_{r}=\frac{R_{d}}{\pi}\left(1-F_{0}\right)+(0.0397436 \text { shininess }+0.0856832) \frac{F_{\text {spec }}\left(F_{0}\right)(N \cdot H)^{\text {shininess }}}{\max (N \cdot L, N \cdot E)}
$$

Our implemented BRDF model (approximated)

Physically Based Image Based Lighting

- PBIBL is implemented for area lighting
- AmbientBRDF
- Pre-filtered Mipmapped Radiance Environment Map
- Irradiance Environment Map or Spherical Harmonics
- Details are on our past talks in [GDC 2009, 2012], [CEDEC 2007-2011] and [SIGGRAPH 2019

More Than Physically Based Blinn-Phong

- Is this model enough?
- In reality, there are a lot of other complicated models
- The simple physically based Blinn-Phong models, even with anisotropic and spectral models, are not enough
- More complicated shading
- Translucency
- Rough materials
- Layered materials
- Retro-reflectivity

Problems with the Modified Blinn-Phong

- Many real-world materials have multiple layers
- Makes surface appearances more complicated
- Difficult to represent with a single Blinn-Phong model

Layered Materials

- The ideal implementation allows flexibility and supports multiple layers
- Flexibility vs. computational time
- Any BRDF model combination
- Number of layers

Layered Materials

- Dual-layer material implementation
- Reasonable solution
- Based on
- [Weidlich et al. 2009]
"Exploring the Potential of Layered BRDF Models"
- [Weidlich et al. 2011]
"Thinking in layers: modeling with layered materials"

Approximation

- Our implementation is coarsely approximated for performance in real-time
- Approximated components
- Color absorption computation by the top layer
- Using our modified Blinn-Phong instead of Cook-Torrance
- No parallax effects

Color Absorption Approximation

- Color absorption originally takes into account refraction
- But our implementation deals with the nonrefracted distance instead of refracted distance
- Changing the color from the bottom layer by the top layer is regarded as more important than the correct simulation

Color Absorption Approximation

- The original absorption is based on the Bouguer-Lambert-Beer law

Original Form

Approximated Form

Fresnel Component in the Bottom Layer

- The bottom-layer BRDF is evaluated with light passing through the top layer
- Fresnel component in the bottom layer becomes

$$
F_{\text {botom }}\left(n_{1}, n_{2}\right)=\left(1-F\left(n_{1}\right)\right)\left(F\left(\frac{n_{2}}{n_{1}}\right)\right)\left(1-F\left(\frac{1}{n_{1}}\right)\right)
$$

$F(n)$: Fresnel equation
n_{1} : Refractive index of the top layer
n_{2} : Refractive index of the bottom layer

Fresnel Component in the Bottom Layer

- Fresnel component in the bottom layer can be approximated with a constant

$$
\begin{gathered}
F_{\text {transmitance }}\left(n_{1}\right)=\left(1-F\left(n_{1}\right)\right) \\
F_{\text {botoon }}\left(n_{1}, n_{2}\right)=\left(F_{0}\left(\frac{n_{2}}{n_{1}}\right)\left(1-F_{0}\left(\frac{1}{n_{1}}\right)\right)\right.
\end{gathered}
$$

$$
F_{0}(n): \text { Fresnel equation for normal direction }
$$

$F_{\text {transmittance }}(n)$: Transmittance from the top layer by Fresnel term
$F_{\text {botom }}\left(n_{1}, n_{2}\right)$: Reflectance by the bottom layer and Fresnel term

Comparison

Scenes are rendered with one directional light on PS3 @ 1280x720 compared to 0.33 ms using the single-layered Blinn

Approximated
0.37 ms

No Absorption
0.34 ms

IBL for Layered Materials

- IBL is also important for layered materials
- Evaluate IBL twice, once for the top layer and once for the bottom layer
- Mathematically the absorption component must be integrated with the rendering equation
- Also approximated with the same approach as AmbientBRDF

Pre-integration of Absorption Components

- For the specular component
- Mathematically, it depends on the shininess value
- Also coarsely approximated
- Only takes into account the case where it is perfect mirror reflection $\rightarrow N \cdot L=N \cdot E$

$$
\left(\frac{1}{N \cdot L}+\frac{1}{N \cdot E}\right)=\left(\frac{1}{N \cdot E}+\frac{1}{N \cdot E}\right)
$$

Pre-integration of Absorption Components

- Multiply the derived component by the computed color from IBL to compute the specular component

$$
I_{s}=I B L_{\text {specular }} \cdot F_{\text {botom }}\left(n_{1}, n_{2}\right) \max \left(0,1-\alpha^{\prime}\left(\frac{2}{N \cdot E}\right)\right)
$$

Pre-integration of Absorption Components

- For the diffuse component

- Integrate the approximated absorption function over the hemisphere with Lambert

Pre-integration of Absorption Components

- Multiply the derived component by the computed color from IBL to compute the diffuse component

$$
I_{d}=I B L_{\text {diffuse }} \cdot\left(1-F_{\text {botom }}\left(n_{1}, n_{2}\right)\right) \max \left(0,1-\alpha^{\prime}\left(2+\frac{1}{N \cdot E}\right)\right)
$$

Results
SIGGRAPH2012

PS3 @ 1280x720

Performance

Single-layered Blinn with IBL 3.00 ms

Dual-layered Blinn with IBL 4.28 ms

Problems with the Modified Blinn-Phong

- Diffuse component is assumed to be Lambertian
- Many materials in the real world are not Lambertian
- Rough materials (shininess < 30) should have a matte diffuse component rather than Lambert

- Lambert with the Torrance-Sparrow V-cavity model
- Diffuse component with Torrance-Sparrow
- Much more complicated than Cook-Torrance
- Looks more "matte" than Lambert
- View-dependent component
- Off-peak characteristic (retro-reflectivity)
- Shadowing / masking factor
- Inter-reflection effect due to microfacets

Oren-Nayar

Shading Model

$L_{r}\left(\theta_{r}, \theta_{i}, \phi_{r}-\phi_{i} ; \sigma\right)=L_{r}^{1}\left(\theta_{r}, \theta_{i}, \phi_{r}-\phi_{i} ; \sigma\right)+L_{r}^{2}\left(\theta_{r}, \theta_{i}, \phi_{r}-\phi_{i} ; \sigma\right)$

> | Direct Illumination Component |
| :---: |
| $L_{r}^{1}\left(\theta_{r}, \theta_{i}, \phi_{r}-\phi_{i} ; \sigma\right)=\frac{\rho}{\pi} E_{0} \cos \theta_{i}\left[C_{1}(\sigma)+\cos \left(\phi_{r}-\phi_{i}\right) C_{2}\left(\alpha ; \beta ; \phi_{r}-\phi ; \sigma\right) \tan \beta+\left(1-\left\|\cos \left(\phi_{r}-\phi_{i}\right)\right\| C_{3}(\alpha ; \beta ; \sigma) \tan \left(\frac{\alpha+\beta}{2}\right)\right]\right.$ |

Inter-reflection Component
$L_{r}^{2}\left(\theta_{r}, \theta_{i}, \phi_{r}-\phi_{i} ; \sigma\right)=0.17 \frac{\rho^{2}}{\pi} E_{0} \cos \theta_{i} \frac{\sigma^{2}}{\sigma^{2}+0.13}\left[1-\cos \left(\phi_{r}-\phi_{i}\right)\left(\frac{2 \beta}{\pi}\right)^{2}\right]$

$$
\begin{aligned}
& \text { Coefficients } \\
& C_{1}=1-0.5 \frac{\sigma^{2}}{\sigma^{2}+0.33}
\end{aligned} \quad C_{2}=\left\{\begin{array}{ll}
0.45 \frac{\sigma^{2}}{\sigma^{2}+0.09} \sin \alpha & \text { if } \cos \left(\phi_{r}-\phi_{i}\right) \geq 0 \\
0.45 \frac{\sigma^{2}}{\sigma^{2}}\left(\sin \alpha-\left(\frac{2 \beta}{2}\right)^{3}\right) & \text { otherwise }
\end{array} C_{3}=0.125\left(\frac{\sigma^{2}}{\sigma^{2}+0.09}\right)\left(\frac{4 \alpha \beta}{\pi^{2}}\right)^{2}\right.
$$

$$
\alpha=\operatorname{Max}\left(\theta_{r}, \theta_{i}\right) \quad \beta=\operatorname{Min}\left(\theta_{r}, \theta_{i}\right)
$$

Oren-Nayar Qualitative Model

The original paper offers an approximated model

Shading Model

$$
L_{r}\left(\theta_{r}, \theta_{i}, \phi_{r}-\phi_{i} ; \sigma\right)=\frac{\rho}{\pi} E_{0} \cos \theta_{i}\left(A+B \operatorname{Max}\left(0, \cos \left(\phi_{r}-\phi_{i}\right)\right) \sin \alpha \tan \beta\right)
$$

Coefficients

$$
A=1-0.5 \frac{\sigma^{2}}{\sigma^{2}+0.33} \quad B=0.45 \frac{\sigma^{2}}{\sigma^{2}+0.09} \quad \alpha=\operatorname{Max}\left(\theta_{r}, \theta_{i}\right) \quad \beta=\operatorname{Min}\left(\theta_{r}, \theta_{i}\right)
$$

Is Oren-Nayar Too Complex?

$L_{r}\left(\theta_{r}, \theta_{i}, \phi_{r}-\phi_{i} ; \sigma\right)=\frac{\rho}{\pi} E_{0} \cos \theta_{i}\left(A+B \operatorname{Max}\left(0, \cos \left(\phi_{r}-\phi_{i}\right)\right) \sin \alpha \tan \beta\right)$

Rewrite this model with familiar expressions

$L_{r}=\frac{\rho}{\pi} E_{0}(N \cdot L)\left(\left(1.0-0.5 \frac{\sigma^{2}}{\sigma^{2}+0.33}\right)+\left(0.45 \frac{\sigma^{2}}{\sigma^{2}+0.09}\right) \operatorname{Max}\left(0, \frac{E-N(N \cdot E)}{\|E-N(N \cdot E)\|} \cdot \frac{L-N(N \cdot L)}{\|L-N(N \cdot L)\|}\right) \frac{\sqrt{\left(1-\operatorname{Max}(N \cdot L, N \cdot E)^{2}\right)\left(1-\operatorname{Min}(N \cdot L, N \cdot E)^{2}\right)}}{\operatorname{Max}(N \cdot L, N \cdot E)}\right)$

Oren-Nayar Simplification (2)

$\left.L_{r}=\frac{\rho}{\pi} E_{0}\left[(N \cdot L)\left(1.0-0.5 \frac{\sigma^{2}}{\sigma^{2}+0.33}\right)+\left(\left(0.45 \frac{\sigma^{2}}{\sigma^{2}+0.09}\right) \operatorname{Max}\left(0, \frac{(E-N(N \cdot E)) \cdot(L-N(N \cdot L))}{\|E-N(N \cdot E)\| \cdot\|L-N(N \cdot L)\|}\right) \sqrt{\left(1-(N \cdot L)^{2}\right)\left(1-(N \cdot E)^{2}\right)} \operatorname{Min}\left(1, \frac{N \cdot L}{N \cdot E}\right)\right)\right]\right]$
\square Recall the original definition
$\frac{(E-N(N \cdot E)) \cdot(L-N(N \cdot L))}{\|E-N(N \cdot E)\| \cdot\|L-N(N \cdot L)\|}=\cos \left(\phi_{r}-\phi_{i}\right)$
Derive the relational expression from Eq.(37) and (38) in the original paper
$\cos \theta_{r} \cos \theta_{i}+\sin \theta_{r} \sin \theta_{i} \cos \left(\phi_{r}-\phi_{i}\right)=\cos \left(\theta_{r}-\theta_{i}\right)$
Rewrite
$(N \cdot E)(N \cdot L)+\sqrt{1-(N \cdot E)^{2}} \sqrt{1-(N \cdot L)^{2}} \cos \left(\phi_{r}-\phi_{i}\right)=E \cdot L$
Transpose terms
$\cos \left(\phi_{r}-\phi_{i}\right)=\frac{E \cdot L+(N \cdot E)(N \cdot L)}{\sqrt{\left(1-(N \cdot E)^{2}\right)\left(1-(N \cdot L)^{2}\right)}}$

Oren-Nayar Simplification (3)

$$
\begin{aligned}
& L_{r}=\frac{\rho}{\pi} E_{0}\left[(N \cdot L)\left(1.0-0.5 \frac{\sigma^{2}}{\sigma^{2}+0.33}\right)+\left(\left(0.45 \frac{\sigma^{2}}{\sigma^{2}+0.09}\right) \operatorname{Max}\left(0, \frac{E \cdot L-(N \cdot E)(N \cdot L)}{\sqrt{\left(1-(N \cdot L)^{2}\right)\left(1-(N \cdot E)^{2}\right)}} \sqrt{\sqrt{\left(1-(N \cdot L)^{2}\right)\left(1-(N \cdot E)^{2}\right)}} \operatorname{Min}\left(1, \frac{N \cdot L}{N \cdot E}\right)\right)\right]\right. \\
& L_{r}=\frac{\rho}{\pi} E_{0}\left[(N \cdot L)\left(1.0-0.5 \frac{\sigma^{2}}{\sigma^{2}+0.33}\right)+\left(\left(0.45 \frac{\sigma^{2}}{\sigma^{2}+0.09}\right) \operatorname{Max}(0, E \cdot L-(N \cdot E)(N \cdot L)) \operatorname{Min}\left(1, \frac{N \cdot L}{N \cdot E}\right)\right)\right]
\end{aligned}
$$

Simplified Oren-Nayar

Key component for Oren-Nayar

$$
L_{,}=\frac{\rho_{1}}{\pi} E_{0}(N \cdot L)\left(\left(1.0-0.5 \frac{\sigma^{2}}{\sigma^{2}+0.33}\right)+\left(0.45 \frac{\sigma^{2}}{\sigma^{2}+0.09}\right) \operatorname{Max}\left(0, \frac{(E-N(N \cdot E) \cdot(L-N(N \cdot L))}{|E-N(N \cdot E)| \cdot L L-N(N) \mid} \frac{\sqrt{\left(1-M a x(N \cdot L, N \cdot E)^{2}\right)\left(1-\operatorname{Min}(N \cdot L, L, N \cdot E)^{2}\right)}}{\operatorname{Max}(N \cdot L, N \cdot E)}\right)\right.
$$

Before simplification

Roughness Map for Oren-Nayar

- Use a shininess map for both specular and diffuse
- It works for most cases
- If shininess is used for specular
- $\sigma=\sqrt{\frac{2}{\text { shininess }}}$
- When the sizes of the microfacets are close to wavelengths of the visible light
- Specular and diffuse behave differently
- Two different shininess (roughness) maps for diffuse and specular

More Simplification

$$
L_{r}=\frac{\rho}{\pi} E_{0}\left[(N \cdot L)\left(1.0-0.5 \frac{\sigma^{2}}{\sigma^{2}+0.33}\right)+\left(\left(0.45 \frac{\sigma^{2}}{\sigma^{2}+0.09}\right) \operatorname{Max}(0, E \cdot L-(N \cdot E)(N \cdot L)) \operatorname{Min}\left(1, \frac{N \cdot L}{N \cdot E}\right)\right)\right]
$$

Substitute $\sigma^{2}=\frac{2}{\text { shininess }}$

$$
L_{r}=\frac{\rho}{\pi} E_{0}\left[(N \cdot L)\left(1-0.5 \frac{\frac{2}{\operatorname{shi}}}{\frac{2}{s h i}+0.33}\right)+\left(\left(0.45 \frac{\frac{2}{\operatorname{shi}}}{\frac{2}{s h i}+0.09}\right) \operatorname{Max}(0, E \cdot L-(N \cdot E)(N \cdot L)) \operatorname{Min}\left(1, \frac{N \cdot L}{N \cdot E}\right)\right]\right)
$$

Simplify

$$
L_{r}=\frac{\rho}{\pi} E_{0}\left[(N \cdot L)\left(1-\frac{1}{2+0.33 s h i}\right)+\left(\frac{1}{2.22222+0.1 \operatorname{shi}} \operatorname{Max}(0, E \cdot L-(N \cdot E)(N \cdot L)) \operatorname{Min}\left(1, \frac{N \cdot L}{N \cdot E}\right)\right)\right]
$$

Problems with Qualitative Model

- When L•E < 0 (backward light), the qualitative model becomes Lambert, but the original doesn't
- This problem makes the results look slightly flat
- The qualitative model doesn't contain an inter-reflection component
- It makes the results slightly dark

Improved Qualitative Model (1)

$$
L_{r}=\frac{\rho}{\pi} E_{0}\left[(N \cdot L)\left(1-\frac{1}{2+0.33 s h i}\right)+\left(\frac{1}{2.22222+0.1 s h i} \operatorname{Max}(0, E \cdot L-(N \cdot E)(N \cdot L)) \operatorname{Min}\left(1, \frac{N \cdot L}{N \cdot E}\right)\right)\right]
$$

Remove the first Max and tweak the coefficient

$$
L_{r}=\frac{\rho}{\pi} E_{0}\left[(N \cdot L)\left(1-\frac{1}{2+0.65 s h i}\right)+\left(\frac{1}{2.22222+0.1 \operatorname{shi}}(E \cdot L-(N \cdot E)(N \cdot L)) \operatorname{Min}\left(1, \frac{N \cdot L}{N \cdot E}\right)\right)\right]
$$

Improved Qualitative Model (2)

- Change the formula with respect to forward and backward lighting like C_{2} in the original Oren-Nayar

$$
C_{2}= \begin{cases}0.45 \frac{\sigma^{2}}{\sigma^{2}+0.09} \sin \alpha & \text { if } \cos \left(\phi_{r}-\phi_{i}\right) \geq 0 \\ 0.45 \frac{\sigma^{2}}{\sigma^{2}+0.09}\left(\sin \alpha-\left(\frac{2 \beta}{\pi}\right)^{3}\right) & \text { otherwise }\end{cases}
$$

$$
L_{r}= \begin{cases}\frac{\rho}{\pi} E_{0}\left[(N \cdot L)\left(1-\frac{1}{2+0.65 s h i}\right)+\left(\frac{1}{2.22222+0.1 \operatorname{shi}}(E \cdot L-(N \cdot E)(N \cdot L)) \operatorname{Min}\left(1, \frac{N \cdot L}{N \cdot E}\right)\right)\right] & \text { if }(E \cdot L-(N \cdot E)(N \cdot L)) \geq 0 \\ \frac{\rho}{\pi} E_{0}\left[(N \cdot L)\left(1-\frac{1}{2+0.65 s h i}\right)+\left(\frac{1}{2.22222+0.1 \operatorname{shi}}(E \cdot L-(N \cdot E)(N \cdot L))(N \cdot L)\right)\right] & \text { otherwise }\end{cases}
$$

Comparison

Qualitative model

Improved model
one directional light on PS3 @ 1280x720

Blinn-Lambert
0.97 ms

Blinn-Oren-Nayar 1.25 ms

IBL for Oren-Nayar

- Difficult to take into account the view-dependent component with image-based lighting
- Requires a multi-dimensional cube map like Blinn-Phong specular
- If using SH lighting for the diffuse component
- Can SH coefficients be tweaked to reproduce OrenNayar characteristics?

Oren-Nayar Characteristics

- Matte appearance
- Using low-order SH coefficients is "matte" enough
- Should we reduce high-order SH coefficients by roughness?
- View-dependent component
- It gives the appearance of a very "matte-like" specular component
- Should we control SH coefficients using the eye vector?
- Shadow / masking factor
- Total energy changes by incident and outgoing directions
- Should we control SH coefficients using the light and eye vectors?
- Off-peak diffuse (retro-reflective component)
- Should we bend the normal vector?

SH Oren-Nayar Approximation

- The following characteristics are reproduced in our implementation
- View-dependent component
- Distinctive difference between Oren-Nayar and Lambert
- Shadow / masking factor
- This affects brightness of shading result
- $1^{\text {st }}$-order SH is "matte" enough
- Retro-reflective component is difficult to distinguish
- It is not computationally reasonable

SH Oren-Nayar Approximation (1)

- Check the total energy by integrating Oren-Nayar over the hemisphere

$$
f\left(\theta_{r}\right)=\int_{\Omega} L_{r}\left(\theta_{i}, \theta_{r}\right) d \omega_{i}
$$

Blue	$: \sigma=0.0$
Red	$: \sigma=0.25$
Yellow	$: \sigma=0.5$
Green	$: \sigma=1.0$

SH Oren-Nayar Approximation (2)

- Total energy affects the DC component in SH coefficients
- The DC component can be computed as:

$$
S H_{D C}^{\prime}=\left(f(s h i)+\frac{1}{2} g(s h i)\left(1+\frac{2 \arccos (N \cdot E)}{\pi}-N \cdot E\right)\right) S H_{D C}
$$

$$
\begin{aligned}
& f(\text { shi })=\left(1-\frac{1}{2+0.65 s h i}\right) \\
& g(s h i)=\left(\frac{1}{2.22222+0.1 s h i}\right)
\end{aligned}
$$

SH Oren-Nayar Approximation (3)

- The fitted model is still computationally expensive
- The following coarse approximation may be useful for real-time

$$
S H_{D C}^{\prime}=(f(\operatorname{shi})+g(\operatorname{shi})(1-N \cdot E)) S H_{D C}
$$

SH Oren-Nayar Approximation (4)

- Oren-Nayar values become a flat line (matte) as
- σ and $\mathrm{N} \cdot \mathrm{E}$ get bigger
- $\phi_{r}-\phi_{i}$ becomes small enough (inside the plane of incidence)

	$\mathrm{N} \cdot \mathrm{E}=1$	$\mathrm{~N} \cdot \mathrm{E}=0$	
$\sigma=0$		Equivalent to Lambert	

SH Oren-Nayar Approximation (5)

- Design a function to interpolate a scale factor for the linear component with a different σ and $\mathrm{N} \cdot \mathrm{E}$
- Try to reproduce the most noticeable characteristic ($\left.\phi_{r}-\phi_{i}=0\right)$ because there is no light vector for image-based lighting

SH Oren-Nayar Approximation (5)

- Linear component can represent how "matte" it is
- Linear component can be computed as:

$$
S H_{\text {linear }}^{\prime}=S(s h i, N \cdot E) S H_{\text {linear }} S(s, x)=f(s)+(f(s)-1)(1-x)
$$

	$\mathrm{N} \cdot \mathrm{E}=1$	$\mathrm{~N} \cdot \mathrm{E}=0$
$\sigma=0$	Equivalent to Lambert	Equivalent to Lambert
	$S(\infty, 1.0)=1.0$	$S(\infty, 0.0)=1.0$
$\sigma=1$	0.7^{*} Lambert	Comparatively Flat
	$S(2,1.0)=f(2) \approx 0.7$	$S(2,0.0)=2 f(2)-1 \approx 0.4$

Performance

Blinn-Lambert

 1.35 msBlinn-Oren-Nayar 1.62 ms

Thoughts on Human Skin

- Human skin is composed of
- a coat of oil and moisture
- skin (epidermis, dermis, blood vessels)
- Subsurface scattering
- Roughness component
- E.g. Roughness is 0.58 for Oren-Nayar

Simplest Implementation

- With only a single physically based Blinn-Phong
- Control specular by using a shininess map to represent oil
- Skin appearance is reproduced with an ad-hoc approach such as drawing highlights into the albedo textures

Subsurface Scattering Implementation

- Blinn-Phong + subsurface scattering
- Single-layered material with a subsurface scattering algorithm
- Try to represent not only the translucent component, but also a matte appearance without a more "matte" diffuse component
- Too much translucency
- Looks like a wax figure

Layered Material + Oren-Nayar

- Better appearance than the simplest implementation
- The top layer represents oil and moisture
- The bottom layer represents the skin itself (matte specular and diffuse)
- No translucency

More Realistic

- Layered materials
- Oil and moisture
- Matte specular and diffuse for the skin surface
- Additionally
- Multiple layered subsurface scattering for epidermis, dermis, and blood vessels

Performance

- Even physically based Blinn-Phong or Cook-Torrance is not enough to represent realistic materials
- Layered materials and Oren-Nayar are computationally inexpensive to implement even for current-gen consoles
- Realistic diffuse shading is very important
- They can be selectively used based on performance
- These materials could become the standard for next-gen consoles

Acknowledgements

Tatsuya Shoji
Shawn (L. Spiro) Wilcoxen

- Elliott Davis

Questions?

You can find these slides, including past presentations, at
http://research.tri-ace.com/

