SIGGRAPH2012

The **39th** International **Conference** and **Exhibition** on **Computer Graphics** and **Interactive Techniques**

Beyond a Simple Physically Based Blinn-Phong Model in Real-time

Yoshiharu Gotanda

Research and Development Department. tri-Ace, Inc.

Real-time Physically Based Rendering

- Make the entire rendering pipeline physically based (for current-gen consoles)
 - Physically based
 - shading models
 - Physically based BRDF models
 - lighting
 - Quantities based on physics
 - Film simulation (spectrum based tone-mapping)
 - camera simulation
 - Lens simulation based on real camera system

Modified Blinn-Phong Model

- A modified Blinn-Phong model
 - Basic function
 - Blinn-Phong for NDF (D)
 - Schlick Approximation (F)
 - Spherical Gaussian Approximation
 - Neumann-Neumann GAF (G)
 - Normalized specular component
 - Fitted to a linear function
 - Energy conservation
 - Approximated for performance
 - Details on "Physically Based Shading Models at tri-Ace" [SIGGRAPH 2010]

Our Physically Based Blinn-Phong

$$L_{r} = \frac{R_{d}}{\pi} \left(1 - F_{diff}(F_{0}) \right) + \frac{(n+2)}{4\pi(2-2^{-\frac{n}{2}})} \cdot \frac{F_{spec}(F_{0})(N \cdot H)^{n}}{\max(N \cdot L, N \cdot E)}$$

Our modified physically based Blinn-Phong model

Approximation

$$L_{r} = \frac{R_{d}}{\pi} (1 - F_{0}) + (0.0397436 shininess + 0.0856832) \frac{F_{spec}(F_{0})(N \cdot H)^{shininess}}{\max(N \cdot L, N \cdot E)}$$

Our implemented BRDF model (approximated)

Physically Based Image Based Lighting

- PBIBL is implemented for area lighting
 - AmbientBRDF
 - Pre-filtered Mipmapped Radiance Environment Map
 - Irradiance Environment Map or Spherical Harmonics
 - Details are on our past talks in [GDC 2009, 2012], [CEDEC 2007-2011] and [SIGGRAPH 2010]

More Than Physically Based Blinn-Phong SIGGRAPH2012

- Is this model enough?
 - In reality, there are a lot of other complicated models
 - The simple physically based Blinn-Phong models, even with anisotropic and spectral models, are not enough
 - More complicated shading
 - Translucency
 - Rough materials
 - Layered materials
 - Retro-reflectivity

Problems with the Modified Blinn-Phong

- Many real-world materials have multiple layers
 - Makes surface appearances more complicated
 - Difficult to represent with a single Blinn-Phong model

Layered Materials

- The ideal implementation allows flexibility and supports multiple layers
 - Flexibility vs. computational time
 - Any BRDF model combination
 - Number of layers

Layered Materials

- Dual-layer material implementation
 - Reasonable solution
 - Based on
 - [Weidlich et al. 2009]
 "Exploring the Potential of Layered BRDF Models"
 - [Weidlich et al. 2011]

"Thinking in layers: modeling with layered materials"

Approximation

- Our implementation is coarsely approximated for performance in real-time
 - Approximated components
 - Color absorption computation by the top layer
 - Using our modified Blinn-Phong instead of Cook-Torrance
 - No parallax effects

Color Absorption Approximation

- Color absorption originally takes into account refraction
 - But our implementation deals with the nonrefracted distance instead of refracted distance
 - Changing the color from the bottom layer by the top layer is regarded as more important than the correct simulation

SIGGRAPH201

Research and Development Department

Color Absorption Approximation

Fresnel Component in the Bottom Layer

- The bottom-layer BRDF is evaluated with light passing through the top layer
 - Fresnel component in the bottom layer becomes

$$F_{bottom}(n_1, n_2) = \left(1 - F(n_1)\right) \left(F(\frac{n_2}{n_1})\right) \left(1 - F(\frac{1}{n_1})\right)$$

$$F(n) : \text{Fresnel equation}$$

$$n_1 : \text{Refractive index of the top layer}$$

$$n_2 : \text{Refractive index of the bottom layer}$$

Fresnel Component in the Bottom Layer

Approximation

- SIGGRAPH2012
- Fresnel component in the bottom layer can be approximated with a constant

$$\begin{split} F_{transmittance}(n_1) &= \left(1 - F(n_1)\right) \\ F_{bottom}(n_1, n_2) &= \left(F_0(\frac{n_2}{n_1})\right) \left(1 - F_0(\frac{1}{n_1})\right) \\ F_0(n) &: \text{Fresnel equation for normal direction} \\ F_{transmittance}(n) &: \text{Transmittance from the top layer by Fresnel term} \\ F_{bottom}(n_1, n_2) &: \text{Reflectance by the bottom layer and Fresnel term} \end{split}$$

Comparison

Scenes are rendered with one directional light on PS3 @ 1280x720 compared to 0.33ms using the single-layered Blinn

Original Absorption 0.53ms

Approximated 0.37ms

No Absorption 0.34ms

IBL for Layered Materials

- IBL is also important for layered materials
 - Evaluate IBL twice, once for the top layer and once for the bottom layer
 - Mathematically the absorption component must be integrated with the rendering equation
 - Also approximated with the same approach as AmbientBRDF

Pre-integration of Absorption Components SIGGRAPH2012

- For the specular component
 - Mathematically, it depends on the shininess value
 - Also coarsely approximated
 - Only takes into account the case where it is perfect mirror reflection → N · L = N · E

Pre-integration of Absorption Components

 Multiply the derived component by the computed color from IBL to compute the specular component

$$I_{s} = IBL_{specular} \cdot F_{bottom}(n_{1,}n_{2}) \max\left(0, 1 - \alpha'(\frac{2}{N \cdot E})\right)$$

Pre-integration of Absorption Components SIGGRAPH2012

- For the diffuse component
 - Integrate the approximated absorption function over the hemisphere with Lambert

Pre-integration of Absorption Components SIGGRAPH2012

 Multiply the derived component by the computed color from IBL to compute the diffuse component

$$I_d = IBL_{diffuse} \cdot \left(1 - F_{bottom}(n_1, n_2)\right) \max\left(0, 1 - \alpha'(2 + \frac{1}{N \cdot E})\right)$$

Results

versarch and pevershinent bebardment

Performance

PS3 @ 1280x720

Single-layered Blinn with IBL 3.00 ms Dual-layered Blinn with IBL 4.28 ms

Problems with the Modified Blinn-Phong

- Diffuse component is assumed to be Lambertian
 - Many materials in the real world are not Lambertian
 - Rough materials (shininess < 30) should have a matte diffuse component rather than Lambert

SIGGRAPH2012

Development Department

Oren-Nayar

- Lambert with the Torrance-Sparrow V-cavity model
 - Diffuse component with Torrance-Sparrow
 - Much more complicated than Cook-Torrance
 - Looks more "matte" than Lambert
 - View-dependent component
 - Off-peak characteristic (retro-reflectivity)
 - Shadowing / masking factor
 - Inter-reflection effect due to microfacets

Oren-Nayar

SIGGRAPH2012

Research and Development Department

Shading Model

$$\overline{L_r(\theta_r, \theta_i, \phi_r - \phi_i; \sigma)} = L_r^1(\theta_r, \theta_i, \phi_r - \phi_i; \sigma) + L_r^2(\theta_r, \theta_i, \phi_r - \phi_i; \sigma)$$

Direct Illumination Component

$$L_r^1(\theta_r, \theta_i, \phi_r - \phi_i; \sigma) = \frac{\rho}{\pi} E_0 \cos \theta_i \left[C_1(\sigma) + \cos(\phi_r - \phi_i) C_2(\alpha; \beta; \phi_r - \phi; \sigma) \tan \beta + (1 - |\cos(\phi_r - \phi_i)| C_3(\alpha; \beta; \sigma) \tan(\frac{\alpha + \beta}{2}) \right]$$

Inter-reflection Component

$$L_r^2(\theta_r, \theta_i, \phi_r - \phi_i; \sigma) = 0.17 \frac{\rho^2}{\pi} E_0 \cos \theta_i \frac{\sigma^2}{\sigma^2 + 0.13} \left[1 - \cos(\phi_r - \phi_i) (\frac{2\beta}{\pi})^2 \right]$$

$$Coefficients C_{1} = 1 - 0.5 \frac{\sigma^{2}}{\sigma^{2} + 0.33} \quad C_{2} = \begin{cases} 0.45 \frac{\sigma^{2}}{\sigma^{2} + 0.09} \sin \alpha & \text{if } \cos(\phi_{r} - \phi_{i}) \ge 0\\ 0.45 \frac{\sigma^{2}}{\sigma^{2} + 0.09} \left(\sin \alpha - (\frac{2\beta}{\pi})^{3}\right) & \text{otherwise} \end{cases} \quad C_{3} = 0.125 \left(\frac{\sigma^{2}}{\sigma^{2} + 0.09}\right) \left(\frac{4\alpha\beta}{\pi^{2}}\right)^{2} \\ \alpha = Max(\theta_{r}, \theta_{i}) \qquad \beta = Min(\theta_{r}, \theta_{i}) \end{cases}$$

The original paper offers an approximated model

Shading Model

$$L_r(\theta_r, \theta_i, \phi_r - \phi_i; \sigma) = \frac{\rho}{\pi} E_0 \cos \theta_i (A + B \operatorname{Max}(0, \cos(\phi_r - \phi_i)) \sin \alpha \tan \beta)$$

Coefficients

$$A = 1 - 0.5 \frac{\sigma^2}{\sigma^2 + 0.33} \quad B = 0.45 \frac{\sigma^2}{\sigma^2 + 0.09} \quad \alpha = \text{Max}(\theta_r, \theta_i) \quad \beta = \text{Min}(\theta_r, \theta_i)$$

Oren-Nayar Simplification (1)

Oren-Nayar Simplification (2)

Simplified Oren-Nayar

Development Department

Before simplification

Roughness Map for Oren-Nayar

- SIGGRAPH2012
- Use a shininess map for both specular and diffuse
 - It works for most cases
 - If shininess is used for specular

$$\sigma = \sqrt{\frac{2}{shininess}}$$

- When the sizes of the microfacets are close to wavelengths of the visible light
 - Specular and diffuse behave differently
 - Two different shininess (roughness) maps for diffuse and specular

More Simplification

Problems with Qualitative Model

- When L·E < 0 (backward light), the qualitative model becomes Lambert, but the original doesn't
 - This problem makes the results look slightly flat
- The qualitative model doesn't contain an inter-reflection component
 - It makes the results slightly dark

Improved Qualitative Model (1)

Improved Qualitative Model (2)

 Change the formula with respect to forward and backward lighting like C₂ in the original Oren-Nayar

$$C_2 = \begin{cases} 0.45 \frac{\sigma^2}{\sigma^2 + 0.09} \sin \alpha & \text{if } \cos(\phi_r - \phi_i) \ge 0\\ 0.45 \frac{\sigma^2}{\sigma^2 + 0.09} \left(\sin \alpha - (\frac{2\beta}{\pi})^3\right) & \text{otherwise} \end{cases}$$

$$L_{r} = \begin{cases} \frac{\rho}{\pi} E_{0} \left[(N \cdot L)(1 - \frac{1}{2 + 0.65shi}) + \left(\frac{1}{2.22222 + 0.1shi}(E \cdot L - (N \cdot E)(N \cdot L))Min(1, \frac{N \cdot L}{N \cdot E})\right) \right] & \text{if } (E \cdot L - (N \cdot E)(N \cdot L)) \ge 0 \\ \frac{\rho}{\pi} E_{0} \left[(N \cdot L)(1 - \frac{1}{2 + 0.65shi}) + \left(\frac{1}{2.22222 + 0.1shi}(E \cdot L - (N \cdot E)(N \cdot L))(N \cdot L)\right) \right] & \text{otherwise} \end{cases}$$

Improved model

Result

Comparison

Original qualitative model

Improved model

Qualitative model

Improved model

Performance

one directional light on PS3 @ 1280x720

Blinn-Lambert 0.97ms

Blinn-Oren-Nayar 1.25ms

- Difficult to take into account the view-dependent component with image-based lighting
 - Requires a multi-dimensional cube map like Blinn-Phong specular
 - If using SH lighting for the diffuse component
 - Can SH coefficients be tweaked to reproduce Oren-Nayar characteristics?

Oren-Nayar Characteristics

- Matte appearance
 - Using low-order SH coefficients is "matte" enough
 - Should we reduce high-order SH coefficients by roughness?
- View-dependent component
 - It gives the appearance of a very "matte-like" specular component
 - Should we control SH coefficients using the eye vector?
- Shadow / masking factor
 - Total energy changes by incident and outgoing directions
 - Should we control SH coefficients using the light and eye vectors?
- Off-peak diffuse (retro-reflective component)
 - Should we bend the normal vector?

SH Oren-Nayar Approximation

- SIGGRAPH2012
- The following characteristics are reproduced in our implementation
 - View-dependent component
 - Distinctive difference between Oren-Nayar and Lambert
 - Shadow / masking factor
 - This affects brightness of shading result
- 1st-order SH is "matte" enough
 - Retro-reflective component is difficult to distinguish
 - It is not computationally reasonable

SH Oren-Nayar Approximation (1)

 Check the total energy by integrating Oren-Nayar over the hemisphere

SH Oren-Nayar Approximation (2)

Total energy affects the DC component in SH coefficients

SIGGRAPH2012

The DC component can be computed as:

SH Oren-Nayar Approximation (3)

- The fitted model is still computationally expensive
 - The following coarse approximation may be useful for real-time

SH Oren-Nayar Approximation (4)

- Oren-Nayar values become a flat line (matte) as
 - σ and N·E get bigger
 - $\phi_r \phi_i$ becomes small enough (inside the plane of incidence)

SH Oren-Nayar Approximation (5)

- Design a function to interpolate a scale factor for the linear component with a different σ and N·E
 - Try to reproduce the most noticeable characteristic ($\phi_r \phi_i = 0$) because there is no light vector for image-based lighting

SH Oren-Nayar Approximation (5)

Linear component can be computed as:

$SH'_{linear} = S(shi, N \cdot E)SH_{linear}$ $S(s, x) = f(s) + (f(s) - 1)(1 - x)$		
	N·E = 1	$N \cdot E = 0$
<i>σ</i> = 0	Equivalent to Lambert	Equivalent to Lambert
	$S(\infty, 1.0) = 1.0$	$S(\infty, 0.0) = 1.0$
σ=1	0.7 * Lambert	Comparatively Flat
	$S(2,1.0) = f(2) \approx 0.7$	$S(2,0.0) = 2f(2) - 1 \approx 0.4$

one IBL on PS3 @ 1280x720

Performance

Blinn-Lambert 1.35ms

Blinn-Oren-Nayar 1.62ms

Thoughts on Human Skin

- Human skin is composed of
 - a coat of oil and moisture
 - skin (epidermis, dermis, blood vessels)
 - Subsurface scattering
 - Roughness component
 - E.g. Roughness is 0.58 for Oren-Nayar

Simplest Implementation

- With only a single physically based Blinn-Phong
 - Control specular by using a shininess map to represent oil
 - Skin appearance is reproduced with an ad-hoc approach such as drawing highlights into the albedo textures

Subsurface Scattering Implementation

- Blinn-Phong + subsurface scattering
 - Single-layered material with a subsurface scattering algorithm
 - Try to represent not only the translucent component, but also a matte appearance without a more "matte" diffuse component
 - Too much translucency
 - Looks like a wax figure

SIGGRAPH2012

Layered Material + Oren-Nayar

- Better appearance than the simplest implementation
 - The top layer represents oil and moisture
 - The bottom layer represents the skin itself (matte specular and diffuse)
 - No translucency

SIGGRAPH2012

More Realistic

- Layered materials
 - Oil and moisture
 - Matte specular and diffuse for the skin surface
- Additionally
 - Multiple layered subsurface scattering for epidermis, dermis, and blood vessels

Result

Performance

Blinn-Lambert Blinn-Oren-Nayar 6.87ms 7.17ms Layered Blinn-Lambert 7.55ms Layered Blinn-Oren-Nayar 7.82ms

one directional light + one IBL on PS3 @ 1280x720

Research and Development Department

Conclusion

- Even physically based Blinn-Phong or Cook-Torrance is not enough to represent realistic materials
- Layered materials and Oren-Nayar are computationally inexpensive to implement even for current-gen consoles
 - Realistic diffuse shading is very important
 - They can be selectively used based on performance
 - These materials could become the standard for next-gen consoles

Acknowledgements

Tatsuya ShojiShawn (L. Spiro) WilcoxenElliott Davis

Questions?

You can find these slides, including past presentations, at

http://research.tri-ace.com/