Mathematica Notebook for
“Background: Physics and Math of
Shading”
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This notebook contains some computations referenced in the course notes.

Of [NIntegrate::inunr]
Set Opti ons [Pl ot, Pl otRange » Al l 1;

(» Based on the Sol arized col or schene: http: //ethanschoonover. convsol ari zed =)
pCol = Hue[O, 0.79, 0.867;

bCol = Hue[0.57, 0.82, 0.82];

tsCol = Hue[O. 17;

trCol = Hue[0.19, 1, 0.67;

abcCol = Hue[0.66, 0.45, 0.77];

sgdCol = Hue[O. 125, 1, 0.717;

Phong NDF
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Thisisthe unnormalized Phong distribution function:
unnor mal i zedphong = Cos [6]%;
Compute the normalization factor (relative to projected ared) for the Phong distribution function:

phongnor nf =
I nt egrat e[unnor el i zedphong Si n[e] Cos[6], {#, -m, x}, {6, 0, w/ 2}, Assunptions -» {ap > 0}]

27

2+o0p

unnor mal i zedphong

phong =
phongnor nf

(2 +oap) Cos[B]P
27

Here are the distribution curves for some logarithmically spaced cosine powers (as well as 0, which corresponds to the
uniform distribution):
G aphi csRow[ {Pl ot [phong /. ap » # & /@ {0, 1, 2, 4, 8}, {6, 0, w/ 2}, PlotStyle - pCol ],
Pl ot [phong /. ap » # & /@ {16, 32, 64, 128}, {6, 0, n/2}, PlotStyle -» pCol 1,
Pl ot [phong /. ap » # & /@ {256, 512, 1024, 2048},
{6, 0, w/2}, PlotStyle -» pCol 1}, | mageSi ze » Ful | ]
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In[13]:=
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And an interactive graph:
Mani pul at e [Pl ot [phong /. ap -» (80002 -1), {6, 0, w/2}, PlotStyle » pCol ], {{a, 0.25}, 0, 1}]
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Beckmann NDF

In[14]
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Thisis the unnormalized Beckmann distribution function:

1 _( 1-Cos [6]2 )
unnor nmal i zedbeckmann = —————  — @ \ s ab? ;
ab? Cos [61*

Compute the normalization factor (relative to projected area) for the Beckmann distribution function:

beckmannnor nf = | nt egrat e [unnor nal i zedbeckmann Si n[e] Cos [6],
{¢, -7x, =}, {6, 0, 7/2}, Assunptions -» {ab > 0}]

Vs

We see here that the correct normalization factor for the Beckmann distribution, given normalization over projected
area, is .

unnor mal i zedbecknmann

beckmann =
beckmannnor nf

\‘\1—0)5[0]2:} Sec[0]2
e ob? Sec [0]*
7 ab?

The Beckmann ay, parameter is equal to the RMS (root mean square) microfacet slope. Therefore its valid range is
from O (non-inclusive — O corresponds to a perfect mirror or Dirac delta and causes divide by 0 errorsin the Beckmann
formulation) and up to arbitrarily high values. Thereis no specia significance to avalue of 1 —thisjust means that the
RMS slope is 1/1 or 45°. We will look at the shape of the Beckmann NDF for moderately rough surfaces (m from 0.4
to 1):
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n71= Pl ot [beckmann /. ab - # & /@ Range[0.4, 1.0, 0.1], {e, 0, w/2}, PlotStyle » bCol ]

2.0 -
15
ouf171= 1.0 *
0.5
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We see here that at apvalues above 0.75, alocal minimum starts appearing at 0°. Thisis significantly different than a
Phong or Gaussian lobe, where the "roughest” possible surface is a uniform distribution. The Beckmann distribution is
qualitatively different in that its parameter is not related to the variance of the angle but the mean of the slope. Thus a
"very rough" surface in the Beckmann context is not a uniform or almost-uniform distribution, but a distribution
clustered around high slopes. Let uslook at even larger values of m:

nps;= Pl ot [beckmann /. ab » # & /@Range[1, 7], {6, 0, w/2}, PlotStyle - bCol ]

oufigl=
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This behavior is unfortunate for environment map prefiltering, since the frequency content of the NDF decreases to a
certain roughness and then starts increasing with m, Beckmann is supposed to be a good match to real-world measure-
ments, but | am not sure over what range of parameters these comparisons were carried out. Are values this high (or
even higher than 0.75, where the local minima starts appearing) observed in practice?

Let us compare the Beckmann and Phong NDF, using an equivalence between the parameters of the two NDFs
published in "Microfacet Models for Refraction through Rough Surfaces' (EGSR 2007) - note that the equivalence
breaks down for ap > 1:

2
npoy= ab2apfab_]:= — -2
ab?
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inzo;= Graphi csRow[ {Pl ot [ {beckmann /. ab » # & /@ Range [0. 2, 0.5, 0.1],
phong /. ap -» ab2ap [#] & /@ Range[0.2, 0.5, 0.11}, {e, 0, w/2},
Pl ot Styl e - {bCol, pCol }1, Pl ot [{beckmann /. ab -» # & /@ Range[0.6, 1.0, 0.1],
phong /. ap » ab2ap[#] & /@ Range[0.6, 1.0, 0.17},
{6, 0, n/2}, PlotStyle - {bCol, pCol }1}, I mageSi ze -» Ful | ]
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For rough surfaces (I€eft plot), the equivalence holds about as well as can be expected, but the shape of the NDFs starts
to differ significantly as mincreases. For relatively smooth surfaces (right plot) the two NDFs match surprisingly well.
This is to Phong's credit, who devised his NDF (although not as such) purely from observation. As the value of ay
decreases, the match improves.

Interactive graph for “normal” (not super-rough) values, comparing with Phong:

1= Mani pul at e [Pl ot [{beckmann /. ab - a, phong /. ap -» ab2ap[al]},
{6, 0, w/2}, PlotStyle - {bCol, pCol }], {{a, 0.25}, 0.01, 1.0}]

out[21]=
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Interactive graph for Beckmann by itself for super-rough values:
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2= Mani pul at e [Pl ot [beckmann /. ab - a, {6, 0, 7w/2}, PlotStyle -» bCol ], {a, 1.0, 10.0}]
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Torrance-Sparrow NDF

This NDF is a Gaussian on the angle between the microfacet norma and the macroscopic surface normal. We will
need to normalize it since Torrance and Sparrow did not supply a normalization factor:
e 2
ini23;= unnor mal i zedt orr ancesparr ow = e'(ﬂ) :
Well try for an analytical normalization factor:

4= nornts = I ntegrat efunnor mal i zedt orrancesparrowSi n[e] Cos [©],
{¢, -m, n}, {6, 0, 7w/ 2}, Assunptions -» {ats > 0}]

Tt

out[24]= fre’atszﬂ:a/zats[—jErf[ —J'lO(tS]+]'lEI’f[ +iats| +2Erfi [ats]
4

2ats 2ats

Wow, that’s ugly! It aso appears to be complex-valued, which is odd since the function being integrated was real -
valued. Let's seeif it isreally complex-valued:

nes;= Pl ot [I m[norms], {ats, 0.05, 1}, {PlotRange » {-0.01, 0.01}, PlotStyle -» Thick}]
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The imaginary part is O — looks like the normalization factor actualy is real-valued and Mathematica is just being
weird. If we were actually going to use this, we would fit a cheap function to the curve instead of using the analytical
expression. But since we are just comparing it to other NDFs, no need to do that. Let's compare it to Blinn-Phong,
using the Beckmann parameter conversion (according to the Cook-Torrance paper, the Beckmann and Torrance-
Sparrow parameterizations are the same — both are equal to RMS slope):

unnor mal i zedt orr ancespar r ow

niz6l= t Or rancesparrow =
Re[normts]

/ [7(3/2 Re[re’ats2 ats [—J’L Er f {
2ats

ne7= Pl ot [{torrancesparrow /. ats » # & /@ Range[0. 2, 0.5, 0.1],
phong /. ap -» ab2ap[#] & /@ Range[0.2, 0.5, 0.11}, {6, 0, w/2}, PlotStyle » {tsCol, pCol }]

(72
4 @ as?

+iats| +2Erfi [ats}]”

out[26]= -1 at S} +1Erf {

2ats
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The curves do look similar, but it appears that the equivalence between the parameterizations of the two distributionsis
a bit different than the one implied in the Cook-Torrance paper. We could work out the exact equivalence, but if the
Torrance-Sparrow NDF turns out to have similar behavior to Phong over the whole range then it would be wasted
effort since there would be no reason to use the (much more expensive) Torrance-Sparrow NDF. Let’s adjust parame-
ter values manually to make the peaks coincide:

neei= Pl ot [{torrancesparrow /. ats » & &/@ {0. 2027, 0. 3097, 0.425, 0.552},

phong /. ap -» ab2ap[#] & /@ Range[0.2, 0.5, 0.11},
{6, 0, w/2}, PlotStyle » {{tsCol, Thick}, pCol }]

8k

Out[28]=
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The curves appear to be extremely close. Let’slook at arougher part of the domain:
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neop= Pl ot [{torrancesparrow/. ats » # &/@ {0. 7035, 0.899, 1.195, 1.81},
torrancesparrow /. ats -» 100. 0, phong /. ap » ab2ap[#] & /@ Range[0.6, 1.0, 0.1]},
{6, 0, w/2}, PlotStyle » {tsCol, {tsCol, Thick}, pCol }]

0.8
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All'in all, the behavior appears to be very similar to Phong. The curves for rough surfaces are a bit higher at glancing
angles, but the overall trend is towards a uniform distribution, like Phong (and unlike Beckmann). Given this similarity
in behavior and the much higher computational complexity of the Torrance-Sparrow NDF (even higher than it appears
asfirst, since it uses the angle directly rather than the cosine), there does not appear to be areason to useiit.

Trowbridge-Reitz NDF

The original paper by Trowbridge and Reitz, the 1977 Blinn paper, and the 2007 paper by Walter et al. (where they
refer to it as “the GGX distribution”) all have dightly different forms of this NDF. They are all equivalent other than
constant factors; we will independently derive the normalization factor here:

at r?

nEor= unnor mal i zedt rowbri dgereitz = ;
(Cos(e1? (atr?-1) +1)?

ne1= trowbridgereitznornf =1 ntegratefunnornalizedtrowbridgereitz Sin[e] Cos|[e],
{¢, -7, 7}, {6, 0, 7w/ 2}, Assunptions -» {atr > 0}]

Out[31]= 7T

] ] unnor mal i zedt rowbri dgereitz
nE2;= trowbridgereitz =

t rowbri dger ei t znor nf

atr?

Out[32]=
7(1+ (-1+oatr?) Cos[e]?)?

WE' Il look at the distribution curves for moderate parameter values (on the left) as well as for high parameter values

(on theright):
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3= Graphi csRow[ {Pl ot [trowbridgereitz /. atr - # &/@Range[0.4, 1.0, 0.1], {e, 0, w/2},
{Pl ot Range » {0, 2}, PlotStyle »trCol }], Plot [trowbridgereitz /. atr - # &/@Range[l, 7],
{6, 0, n/2}, {PlotRange » {0, 16}, PlotStyle »trCol }1}, | mageSi ze -» Ful | ]
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On the left, we see that the parameterization behaves approximately like Beckmann's: higher is rougher. Unlike
Beckmann, a value of 1.0 gives a uniform distribution (flat line). On the right, we see that the Trowbridge-Reitz
distribution also supports “ super-rough” distributions, like Beckmann.

Let’s compare Trowbridge-Reitz to Phong for the rough-to-moderate range (on the left) and for smoother surfaces (on
the right0. We use the Beckmann parameter equivalence, since behavior with respect to the parameterization appears
similar:
4= Graphi csRow[{Pl ot [{trowbridgereitz /. atr - # &/@Range[0.4, 0.9, 0.1],
trowbridgereitz /. atr - 1.0, phong /. ap -» ab2ap[#] & /@Range[0.4, 1.0, 0.11},
{6, 0, n/2}, PlotStyle » {trCol, {trCol, Thick}, pCol }1,
Pl ot [{trowbridgereitz /. atr » # &/@Range[0.1, 0.4, 0.11,
phong /. ap » ab2ap[#] & /@ Range[0.1, 0.4, 0.1]},
{6, 0, n/2}, PlotStyle -» {trCol, pCol }1}, | mageSi ze -» Ful | ]

2.0k
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The distributions are somewhat similar, but the Trowbridge-Reitz distribution seems to have narrower peaks and
longer “tails’” across the entire range (except for the uniform distribution which isidentical for both).

Finally, here's an interactive plot comparing it to Phong:
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Mani pul ate[Pl ot [{trowbridgereitz /. atr » a, phong /. ap » ab2ap[al},
{6, 0, n/2}, PlotStyle » {trCol, pCol }], {{a, 0.25}, 0.01, 1.0}]

15

ABC NDF

In[36]:=
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1

unnor mal i zedabc = ;
(1 +aabcl (1 - Cos[e]))aabc?

abcnornf = | ntegratef[unnornalizedabc Sin[e] Cos[6],
{¢, -7, 7}, {6, 0, w/ 2}, Assunptions -» {aabcl > 0, aabc2 > 0}]

(27 (1 +ocabcl) 2 ((1+aabcl)? + (1 +aabcl)®@? (-1 +aabcl (-2 +oaabc2)))) /
(a@bc1? (-2 + aabc2) (-1 +ocabc2))

unnor mal i zedabc

abc =
abcnor nf

(c@abc1? (1 +oabcl)®@°2 (-2 +aabc2) (-1 +aabc2) (1+aabcl (1-Cos([e])) *@2) /
(27 ((1+o0abcl)?+ (1+o0abcl)®@? (-1 +cabcl (-2 +aabc2))))

The normalization term is somewhat complex, and it is likely that a much cheaper function could be fitted to it. In
addition, the normalization factor causes this function to have (removable) singularities at aabc2 = 1.0 and wabc2 = 2.0
(another reason to fit a simpler function, which would presumably not have these removable singul arities).

In the following graphs we will avoid these exact values by adding a small epsilon where needed. Since the parameter
space is two-dimensional, we'll need more plots:
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In[39]
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out[42]=

plotl[x_] : = Label ed[Pl ot [abc /. {aabcl - #, aabc2 -» x} &/e {1, 10, 100, 1000},
{6, 0, n/2}, PlotStyle » abcCol ], "aapc2 = " <>ToString[x]]
plot2[x_1] : = Label ed [Pl ot [abc /. {aabcl - x, aabc2 -» #} &/@ {0.1, 0.5, 1.0001, 1.5},
{6, 0, w/2}, PlotStyle » abcCol ], "aapc1 = " <>ToString[x]]
GraphicsGid[{plotl/e {0.1, 0.5, 1.0001, 1.5}, plot2/e {1, 10, 100, 1000}},
| mageSi ze » Ful |, AspectRatio » 0. 25]

0.55

\ 25} 80 E
050\ . i\ o
‘
0.45 ol |
040 \ sl
035 101 \
. 5¢ 200
030 )
05 10 15 05 10 15 05 10 15
Qanc2 = 0.5 @apcz = 1.0001 Qabez = 1.5
0.45 10¢ 80 E
0.40 8r
60
035 of| |
030 \ ol
025 ap | |
' 20}}
0.20 2F \
05 05 1.0 15 05 1.0 15
a1 = 1 @aer = 100 @aer = 1000

And here’ s an interactive plot:

Mani pul at e [Pl ot [abc /. {aabcl -» a, aabc2 » b}, {6, 0, n/2}, PlotStyle - abcCol 1,
{a, 1.0, 1000.0}, {b, 0.25, 2.5}]
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0.29]

Experimenting with various values shows us that the value of aabc2 appears to control the shape, while the value of
aabcl controls the roughness. (They are not cleanly separated, so when varying aabc2 you need to change aabcl to
keep the same roughness.) Let’s seeif we can fit Trowbridge-Reitz using ABC:
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ns3= Mani pul ate[Pl ot [{trowbridgereitz /. atr » ktr, abc /. {aabcl -» kabcl, aabc2 - kabc2}},

{6, 0, w/2}, PlotStyle » {trCol, abcCol }1, {{ktr, 0.5}, 0.1, 0.8},
{{kabcl, 6.3}, 1.04, 254.0}, {{kabc2, 1.75}, 0.25, 2.5}]

ktr

kabcl c{j

kabc2

CJ

CJ

Out[43]=

We can see that an aabc2 value of about 1.75 fits pretty well to Trowbridge-Reitz across the roughness range (less
well for rough surfaces, better for smooth ones). Note that we don’t have an equivalence between them, so we just
manually adjust the aabcl parameter of the ABC curves until the peaks coincide with the Trowbridge-Reitz ones.
Now let’stry to fit Phong with ABC:
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na4;= Mani pul at e [
Pl ot [{phong /. ap - 8000. 0K °%P"°"d apc /. {aabcl - kabcl, aabc2 -» 1/ kabc2recip}},
{6, 0, n/2}, PlotStyle > {pCol, abcCol }], {{klogphong, 0.5}, 0.0, 1.0},
{{kabc1, 0.0905}, 0.0001, 10.0}, {{kabc2recip, 0.001}, 0.0001, O. 999}]

klogphong O

out[44]=
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It seems that ABC asymptotically approaches Phong as the value of aabc2 approaches infinity (here we also lacked an
equivalence so we adjusted aabcl values manually until the peaks matched).

Let’sdemonstrate ABC' sfit to Trowbridge-Reitz with a static plot for aabc2 = 1.75, and to Phong with a static plot for
aabc2 set to ahigh value (1000):

nus;= Graphi csRow[ {Pl ot [{trowbridgereitz /. atr - # &/@Range[0.3, 0.7, 0.1],
abc /. {aabcl » #, aabc2 » 1.75} & /@ {23.5, 11.6, 6.3, 3.55, 2.0}},
{6, 0, n/2}, PlotStyle » {{trCol, Thick}, abcCol }1,
Pl ot [{phong /. ap -» ab2ap[#] & /@ Range[0.3, 0.7, 0.1],
abc /. {aabcl » #, aabc2 -» 1000.0} & /e {0.0212, 0.0114, 0.0068, 0.0043, 0.0026}},
{6, 0, w/2}, PlotStyle > {{pCol, Thick, Dotted}, abcCol }1}, I nageSi ze -» Ful | ]
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Since they are not directly apparent from the Plot command, let’s see the range of Phong parameters covered in the
right plot:
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- ab2ap [0. 3]
outiae- 20. 2222
nan- ab2ap [0. 7]
oua7- 2. 08163

As we have seen, with an eabc2 value of 1.75, ABC can mimic Trowbridge-Reitz quite well. With higher values, ABC
can approach the appearance of Phong. (It should be noted that these are much higher than any of the values fitted to
the Matusik dataset by Low et al.; this may indicate that real-world materials do not typically exhibit Gaussian normal
distributions.) With aabc2 values lower than 1.75, the ABC distribution is even “spikier” than Trowbridge-Reitz; we
will look at avalue of 0.5 (arelatively low value for the Matusik dataset fitting performed in the paper by Low et a. —
lower values were only used for very rough surfaces), comparing it to Trowbridge-Reitz (manually adjusted so the
peaks match):
nue;= Graphi csRow[ {Pl ot [{trowbridgereitz /. atr - # &/@Range[0.5, 0.8, 0.1],
abc /. {aabcl » #, aabc2 » 0.5} &/@ {82.5, 33.5, 14.0, 5.75}}, {6, 0, n/2},
PlotStyle - {trCol, abcCol }], Plot [{trowbridgereitz /. atr » # &/@Range[0.2, 0.5, 0.1],

abc /. {aabcl » #, aabc2 » 0.5} & /e {4250, 785, 240, 82.5}},
{6, 0, n/2}, PlotStyle -» {trCol, abcCol }1}, I mageSi ze » Ful | ]
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We see that with an @abc2 value of 0.5, ABC is significantly “spikier” than Trowbridge-Reitz when modeling rough
surfaces (on the left), and extremely so when modeling smooth ones (on the right).

Shifted Gamma Distribution

asgd12+x

aSgdlaSgdz_l e_ asgdl
n49y= P22[x_] : =
Gamma [l - asgd2, asgdl] (asgd12 +X)asgd2
1-Cos [6]2
p22 —2]
Co
ns0p= sgd = il
nCos[6]*
asgd1?+ (1-Cos [6]2) Sec[6)2
oupol- e e asgd1 992 sec[6]4 (asgd1? + (1 - Cos [6]?) Sec [6]?) asgdzJ/

(rGamma [l - asgd2, asgdl])
First, let’s confirm that it’s normalized, using an analytical integral:

ns1= sgdnornf =
Integrate[sgd Sin[e] Cos[e], {¢, -x, =}, {6, 0, 7w/ 2}, Assunptions » {asgdl > 0, asgd2 > 0}]

outsy= 1
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Yes, it'snormalized. Let’ stake alook at various parameter values, spanning the rough-to-moderate part of the range of
values used for fitting SGD to the Matusik database:

plotl[x_] : = Label ed[Pl ot [sgd /. {asgdl » #, asgd2 » x} & /@ {1.0, 0.5, 0.2, 0.1},
{6, 0, w/2}, PlotStyle -» sgdCol ], "asgd2 = " <>ToString[x]]
plot2[x_] : = Label ed[Pl ot [sgd /. {asgdl - X, asgd2 » #} & /@ {0.0, 0.5, 1.0, 1.5},
{6, 0, n/2}, PlotStyle -» sgdCol ], "asgdl = " <>ToString[x]]
G aphicsGid[{plotl/e{0.0, 0.5, 1.0, 1.5}, plot2/e{1.0, 0.5, 0.2, 0.1}},
| mageSi ze » Ful |, AspectRati o -» 0. 25]
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asgdl = 1. asgdl = 0.5 asydl =02 asgdl = 0.1

Let’slook at an interactive graph with the parameters covering the range of fitted values for the Matusik database:

nss= Mani pul at e [Pl ot [sgd /. {asgdl » a, asgd2 - b}, {6, 0, n/2}, PlotStyle -» sgdCol ],
{{a, 0.25}, 0.0001, 1.0}, {b, 0.0, 1.5}]

C3

/

/

12

10

out[55]=

0.8

0.6

0.4

0.2

L A e A B AN R

0.5 10 15

Finally, let's compare it with ABC:
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inise)= Mani pul ate[Pl ot [{sgd /. {asgdl -» a, asgd2 -» b}, abc /. {aabcl - c, aabc2 - d}},
{6, 0, w/2}, PlotStyle - {sgdCol, abcCol }1,
{{a, 0.253}, 0.0001, 1.0}, {b, 0.0, 1.5}, {c, 1.0, 1000.0}, {d, 0.25, 2.5}]
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