
Mathematica Notebook for 
“Background: Physics and Math of 
Shading”

This notebook contains some computations referenced in the course notes.

In[1]:= Off@NIntegrate::inumrD
SetOptions@Plot, PlotRange ® AllD;

H* Based on the Solarized color scheme: http:��ethanschoonover.com�solarized *L
pCol = Hue@0, 0.79, 0.86D;
bCol = Hue@0.57, 0.82, 0.82D;
tsCol = Hue@0.1D;
trCol = Hue@0.19, 1, 0.6D;
abcCol = Hue@0.66, 0.45, 0.77D;
sgdCol = Hue@0.125, 1, 0.71D;

Phong NDF
This is the unnormalized Phong distribution function:

In[9]:= unnormalizedphong = Cos@ΘDΑp;

Compute the normalization factor (relative to projected area) for the Phong distribution function:

In[10]:= phongnormf =

Integrate@unnormalizedphong Sin@ΘD Cos@ΘD, 8Φ, -Π, Π<, 8Θ, 0, Π � 2<, Assumptions ® 8Αp > 0<D

Out[10]=
2 Π

2 + Αp

In[11]:= phong =
unnormalizedphong

phongnormf

Out[11]=
H2 + ΑpL Cos@ΘDΑp

2 Π

Here are the distribution curves for some logarithmically spaced cosine powers (as well as 0, which corresponds to the
uniform distribution):

In[12]:= GraphicsRow@8Plot@phong �. Αp ® ð & �� 80, 1, 2, 4, 8<, 8Θ, 0, Π � 2<, PlotStyle ® pColD,
Plot@phong �. Αp ® ð & �� 816, 32, 64, 128<, 8Θ, 0, Π � 2<, PlotStyle ® pColD,
Plot@phong �. Αp ® ð & �� 8256, 512, 1024, 2048<,

8Θ, 0, Π � 2<, PlotStyle ® pColD<, ImageSize ® FullD

Out[12]=
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And an interactive graph:

In[13]:= Manipulate@Plot@phong �. Αp ® H8000a
- 1L, 8Θ, 0, Π � 2<, PlotStyle ® pColD, 88a, 0.25<, 0, 1<D

Out[13]=
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Beckmann NDF
This is the unnormalized Beckmann distribution function:

In[14]:= unnormalizedbeckmann =
1

Αb2 Cos@ΘD4
ã

-
1-Cos@ΘD2

Cos@ΘD2 Αb2 ;

Compute the normalization factor (relative to projected area) for the Beckmann distribution function:

In[15]:= beckmannnormf = Integrate@unnormalizedbeckmann Sin@ΘD Cos@ΘD,
8Φ, -Π, Π<, 8Θ, 0, Π � 2<, Assumptions ® 8Αb > 0<D

Out[15]= Π

We see here that the correct normalization factor for the Beckmann distribution, given normalization over projected

area, is 1

Π
.

In[16]:= beckmann =
unnormalizedbeckmann

beckmannnormf

Out[16]=
ã

-

J1-Cos@ΘD2N Sec@ΘD2

Αb2 Sec@ΘD4

Π Αb2

The Beckmann Αb parameter is equal to the RMS (root mean square) microfacet slope. Therefore its valid range is
from 0 (non-inclusive – 0 corresponds to a perfect mirror or Dirac delta and causes divide by 0 errors in the Beckmann
formulation) and up to arbitrarily high values. There is no special significance to a value of 1 – this just means that the
RMS slope is 1/1 or 45°. We will look at the shape of the Beckmann NDF for moderately rough surfaces (m from 0.4
to 1):
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In[17]:= Plot@beckmann �. Αb ® ð & �� Range@0.4, 1.0, 0.1D, 8Θ, 0, Π � 2<, PlotStyle ® bColD

Out[17]=
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We see here that at Αbvalues above 0.75, a local minimum starts appearing at 0°. This is significantly different than a
Phong or Gaussian lobe, where the "roughest" possible surface is a uniform distribution. The Beckmann distribution is
qualitatively different in that its parameter is not related to the variance of the angle but the mean of the slope. Thus a
"very rough" surface in the Beckmann context  is  not  a  uniform or almost-uniform distribution,  but  a  distribution
clustered around high slopes. Let us look at even larger values of m:

In[18]:= Plot@beckmann �. Αb ® ð & �� Range@1, 7D, 8Θ, 0, Π � 2<, PlotStyle ® bColD

Out[18]=
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This behavior is unfortunate for environment map prefiltering, since the frequency content of the NDF decreases to a
certain roughness and then starts increasing with m, Beckmann is supposed to be a good match to real-world measure-
ments, but I am not sure over what range of parameters these comparisons were carried out. Are values this high (or
even higher than 0.75, where the local minima starts appearing) observed in practice?

Let  us  compare  the  Beckmann and Phong NDF,  using an equivalence between the  parameters  of  the  two NDFs
published in "Microfacet Models for Refraction through Rough Surfaces" (EGSR 2007) - note that the equivalence
breaks down for Αb > 1:

In[19]:= Αb2Αp@Αb_D :=
2

Αb2
- 2
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In[20]:= GraphicsRow@8Plot@8beckmann �. Αb ® ð & �� Range@0.2, 0.5, 0.1D,
phong �. Αp ® Αb2Αp@ðD & �� Range@0.2, 0.5, 0.1D<, 8Θ, 0, Π � 2<,

PlotStyle ® 8bCol, pCol<D, Plot@8beckmann �. Αb ® ð & �� Range@0.6, 1.0, 0.1D,
phong �. Αp ® Αb2Αp@ðD & �� Range@0.6, 1.0, 0.1D<,

8Θ, 0, Π � 2<, PlotStyle ® 8bCol, pCol<D<, ImageSize ® FullD

Out[20]=

0.5 1.0 1.5

2

4

6

8

0.5 1.0 1.5

0.2

0.4

0.6

0.8

For rough surfaces (left plot), the equivalence holds about as well as can be expected, but the shape of the NDFs starts
to differ significantly as m increases. For relatively smooth surfaces (right plot) the two NDFs match surprisingly well.
This is to Phong’s credit, who devised his NDF (although not as such) purely from observation. As the value of Αb

decreases, the match improves.

Interactive graph for “normal” (not super-rough) values, comparing with Phong:

In[21]:= Manipulate@Plot@8beckmann �. Αb ® a, phong �. Αp ® Αb2Αp@aD<,
8Θ, 0, Π � 2<, PlotStyle ® 8bCol, pCol<D, 88a, 0.25<, 0.01, 1.0<D

Out[21]=
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Interactive graph for Beckmann by itself for super-rough values:
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In[22]:= Manipulate@Plot@beckmann �. Αb ® a, 8Θ, 0, Π � 2<, PlotStyle ® bColD, 8a, 1.0, 10.0<D

Out[22]=
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Torrance-Sparrow NDF
This NDF is a Gaussian on the angle between the microfacet normal and the macroscopic surface normal. We will
need to normalize it since Torrance and Sparrow did not supply a normalization factor:

In[23]:= unnormalizedtorrancesparrow = ã
-J

Θ

Αts
N

2

;

We'll try for an analytical normalization factor:

In[24]:= normts = Integrate@unnormalizedtorrancesparrow Sin@ΘD Cos@ΘD,
8Φ, -Π, Π<, 8Θ, 0, Π � 2<, Assumptions ® 8Αts > 0<D

Out[24]=
1

4
ã

-Αts2
Π

3�2
Αts -ä ErfB

Π

2 Αts
- ä ΑtsF + ä ErfB

Π

2 Αts
+ ä ΑtsF + 2 Erfi@ΑtsD

Wow, that’s ugly! It also appears to be complex-valued, which is odd since the function being integrated was real-
valued. Let’s see if it is really complex-valued:

In[25]:= Plot@Im@normtsD, 8Αts, 0.05, 1<, 8PlotRange ® 8-0.01, 0.01<, PlotStyle ® Thick<D

Out[25]=
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The imaginary part is 0 – looks like the normalization factor actually is real-valued and Mathematica is just being
weird. If we were actually going to use this, we would fit a cheap function to the curve instead of using the analytical
expression. But since we are just comparing it to other NDFs, no need to do that.  Let’s compare it to Blinn-Phong,
using  the  Beckmann parameter  conversion  (according  to  the  Cook-Torrance  paper,  the  Beckmann and  Torrance-
Sparrow parameterizations are the same – both are equal to RMS slope):
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The imaginary part is 0 – looks like the normalization factor actually is real-valued and Mathematica is just being
weird. If we were actually going to use this, we would fit a cheap function to the curve instead of using the analytical
expression. But since we are just comparing it to other NDFs, no need to do that.  Let’s compare it to Blinn-Phong,
using  the  Beckmann parameter  conversion  (according  to  the  Cook-Torrance  paper,  the  Beckmann and  Torrance-
Sparrow parameterizations are the same – both are equal to RMS slope):

In[26]:= torrancesparrow =
unnormalizedtorrancesparrow

Re@normtsD

Out[26]= 4 ã
-

Θ2

Αts2 � Π
3�2 ReBã

-Αts2
Αts -ä ErfB

Π

2 Αts
- ä ΑtsF + ä ErfB

Π

2 Αts
+ ä ΑtsF + 2 Erfi@ΑtsD F

In[27]:= Plot@8torrancesparrow �. Αts ® ð & �� Range@0.2, 0.5, 0.1D,
phong �. Αp ® Αb2Αp@ðD & �� Range@0.2, 0.5, 0.1D<, 8Θ, 0, Π � 2<, PlotStyle ® 8tsCol, pCol<D

Out[27]=
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The curves do look similar, but it appears that the equivalence between the parameterizations of the two distributions is
a bit different than the one implied in the Cook-Torrance paper. We could work out the exact equivalence, but if the
Torrance-Sparrow NDF turns out to have similar behavior to Phong over the whole range then it would be wasted
effort since there would be no reason to use the (much more expensive) Torrance-Sparrow NDF. Let’s adjust parame-
ter values manually to make the peaks coincide:

In[28]:= Plot@8torrancesparrow �. Αts ® ð & �� 80.2027, 0.3097, 0.425, 0.552<,
phong �. Αp ® Αb2Αp@ðD & �� Range@0.2, 0.5, 0.1D<,

8Θ, 0, Π � 2<, PlotStyle ® 88tsCol, Thick<, pCol<D

Out[28]=
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The curves appear to be extremely close. Let’s look at a rougher part of the domain:
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In[29]:= Plot@8torrancesparrow �. Αts ® ð & �� 80.7035, 0.899, 1.195, 1.81<,
torrancesparrow �. Αts ® 100.0, phong �. Αp ® Αb2Αp@ðD & �� Range@0.6, 1.0, 0.1D<,

8Θ, 0, Π � 2<, PlotStyle ® 8tsCol, 8tsCol, Thick<, pCol<D

Out[29]=
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All in all, the behavior appears to be very similar to Phong. The curves for rough surfaces are a bit higher at glancing
angles, but the overall trend is towards a uniform distribution, like Phong (and unlike Beckmann). Given this similarity
in behavior and the much higher computational complexity of the Torrance-Sparrow NDF (even higher than it appears
as first, since it uses the angle directly rather than the cosine), there does not appear to be a reason to use it.

Trowbridge-Reitz NDF
The original paper by Trowbridge and Reitz, the 1977 Blinn paper, and the 2007 paper by Walter et al. (where they
refer to it as “the GGX distribution”) all have slightly different forms of this NDF. They are all equivalent other than
constant factors; we will independently derive the normalization factor here:

In[30]:= unnormalizedtrowbridgereitz =
Αtr2

ICos@ΘD2 IΑtr2
- 1M + 1M

2
;

In[31]:= trowbridgereitznormf = Integrate@unnormalizedtrowbridgereitz Sin@ΘD Cos@ΘD,
8Φ, -Π, Π<, 8Θ, 0, Π � 2<, Assumptions ® 8Αtr > 0<D

Out[31]= Π

In[32]:= trowbridgereitz =
unnormalizedtrowbridgereitz

trowbridgereitznormf

Out[32]=
Αtr2

Π I1 + I-1 + Αtr2M Cos@ΘD2M
2

We’ll look at the distribution curves for moderate parameter values (on the left) as well as for high parameter values
(on the right):
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In[33]:= GraphicsRow@8Plot@trowbridgereitz �. Αtr ® ð & �� Range@0.4, 1.0, 0.1D, 8Θ, 0, Π � 2<,
8PlotRange ® 80, 2<, PlotStyle ® trCol<D, Plot@trowbridgereitz �. Αtr ® ð & �� Range@1, 7D,
8Θ, 0, Π � 2<, 8PlotRange ® 80, 16<, PlotStyle ® trCol<D<, ImageSize ® FullD

Out[33]=
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On the  left,  we see  that  the  parameterization behaves  approximately  like  Beckmann’s:  higher  is  rougher.  Unlike
Beckmann, a value of 1.0 gives a uniform distribution (flat  line).  On the right,  we see that the Trowbridge-Reitz
distribution also supports “super-rough” distributions, like Beckmann.

Let’s compare Trowbridge-Reitz to Phong for the rough-to-moderate range (on the left) and for smoother surfaces (on
the right0. We use the Beckmann parameter equivalence, since behavior with respect to the parameterization appears
similar: 

In[34]:= GraphicsRow@8Plot@8trowbridgereitz �. Αtr ® ð & �� Range@0.4, 0.9, 0.1D,
trowbridgereitz �. Αtr ® 1.0, phong �. Αp ® Αb2Αp@ðD & �� Range@0.4, 1.0, 0.1D<,

8Θ, 0, Π � 2<, PlotStyle ® 8trCol, 8trCol, Thick<, pCol<D,
Plot@8trowbridgereitz �. Αtr ® ð & �� Range@0.1, 0.4, 0.1D,

phong �. Αp ® Αb2Αp@ðD & �� Range@0.1, 0.4, 0.1D<,
8Θ, 0, Π � 2<, PlotStyle ® 8trCol, pCol<D<, ImageSize ® FullD

Out[34]=
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The distributions  are  somewhat  similar,  but  the  Trowbridge-Reitz  distribution seems to  have narrower peaks  and
longer “tails” across the entire range (except for the uniform distribution which is identical for both).

Finally, here’s an interactive plot comparing it to Phong:
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In[35]:= Manipulate@Plot@8trowbridgereitz �. Αtr ® a, phong �. Αp ® Αb2Αp@aD<,
8Θ, 0, Π � 2<, PlotStyle ® 8trCol, pCol<D, 88a, 0.25<, 0.01, 1.0<D

Out[35]=
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ABC NDF

In[36]:= unnormalizedabc =
1

H1 + Αabc1 H1 - Cos@ΘDLLΑabc2
;

In[37]:= abcnormf = Integrate@unnormalizedabc Sin@ΘD Cos@ΘD,
8Φ, -Π, Π<, 8Θ, 0, Π � 2<, Assumptions ® 8Αabc1 > 0, Αabc2 > 0<D

Out[37]= I2 Π H1 + Αabc1L-Αabc2 IH1 + Αabc1L2
+ H1 + Αabc1LΑabc2 H-1 + Αabc1 H-2 + Αabc2LLMM �

IΑabc12 H-2 + Αabc2L H-1 + Αabc2LM

In[38]:= abc =
unnormalizedabc

abcnormf

Out[38]= IΑabc12 H1 + Αabc1LΑabc2 H-2 + Αabc2L H-1 + Αabc2L H1 + Αabc1 H1 - Cos@ΘDLL-Αabc2M �

I2 Π IH1 + Αabc1L2
+ H1 + Αabc1LΑabc2 H-1 + Αabc1 H-2 + Αabc2LLMM

The normalization term is somewhat complex, and it is likely that a much cheaper function could be fitted to it. In
addition, the normalization factor causes this function to have (removable) singularities at Αabc2 = 1.0 and Αabc2 = 2.0
(another reason to fit a simpler function, which would presumably not have these removable singularities).

In the following graphs we will avoid these exact values by adding a small epsilon where needed. Since the parameter
space is two-dimensional, we’ll need more plots:
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In[39]:= plot1@x_D := Labeled@Plot@abc �. 8Αabc1 ® ð, Αabc2 ® x< & �� 81, 10, 100, 1000<,
8Θ, 0, Π � 2<, PlotStyle ® abcColD, "Αabc2 = " <> ToString@xDD

plot2@x_D := Labeled@Plot@abc �. 8Αabc1 ® x, Αabc2 ® ð< & �� 80.1, 0.5, 1.0001, 1.5<,
8Θ, 0, Π � 2<, PlotStyle ® abcColD, "Αabc1 = " <> ToString@xDD

GraphicsGrid@8plot1 �� 80.1, 0.5, 1.0001, 1.5<, plot2 �� 81, 10, 100, 1000<<,
ImageSize ® Full, AspectRatio ® 0.25D

Out[41]=
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And here’s an interactive plot:

In[42]:= Manipulate@Plot@abc �. 8Αabc1 ® a, Αabc2 ® b<, 8Θ, 0, Π � 2<, PlotStyle ® abcColD,
8a, 1.0, 1000.0<, 8b, 0.25, 2.5<D

Out[42]=
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Experimenting with various values shows us that the value of Αabc2 appears to control the shape, while the value of
Αabc1 controls the roughness. (They are not cleanly separated, so when varying Αabc2 you need to change Αabc1 to
keep the same roughness.) Let’s see if we can fit Trowbridge-Reitz using ABC: 
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In[43]:= Manipulate@Plot@8trowbridgereitz �. Αtr ® ktr, abc �. 8Αabc1 ® kabc1, Αabc2 ® kabc2<<,
8Θ, 0, Π � 2<, PlotStyle ® 8trCol, abcCol<D, 88ktr, 0.5<, 0.1, 0.8<,

88kabc1, 6.3<, 1.04, 254.0<, 88kabc2, 1.75<, 0.25, 2.5<D

Out[43]=

ktr

kabc1

kabc2

0.5 1.0 1.50.0

0.2

0.4

0.6

0.8

1.0

1.2

We can see that an Αabc2 value of about 1.75 fits pretty well to Trowbridge-Reitz across the roughness range (less
well for rough surfaces, better for smooth ones). Note that we don’t have an equivalence between them, so we just
manually adjust the Αabc1 parameter of the ABC curves until the peaks coincide with the Trowbridge-Reitz ones.

Now let’s try to fit Phong with ABC:
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In[44]:= ManipulateA

PlotA9phong �. Αp ® 8000.0klogphong, abc �. 8Αabc1 ® kabc1, Αabc2 ® 1 � kabc2recip<=,

8Θ, 0, Π � 2<, PlotStyle ® 8pCol, abcCol<E, 88klogphong, 0.5<, 0.0, 1.0<,

88kabc1, 0.0905<, 0.0001, 10.0<, 88kabc2recip, 0.001<, 0.0001, 0.999<E

Out[44]=
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It seems that ABC asymptotically approaches Phong as the value of Αabc2 approaches infinity (here we also lacked an
equivalence so we adjusted Αabc1 values manually until the peaks matched).

Let’s demonstrate ABC’s fit to Trowbridge-Reitz with a static plot for Αabc2 = 1.75, and to Phong with a static plot for
Αabc2 set to a high value (1000):

In[45]:= GraphicsRow@8Plot@8trowbridgereitz �. Αtr ® ð & �� Range@0.3, 0.7, 0.1D,
abc �. 8Αabc1 ® ð, Αabc2 ® 1.75< & �� 823.5, 11.6, 6.3, 3.55, 2.0<<,

8Θ, 0, Π � 2<, PlotStyle ® 88trCol, Thick<, abcCol<D,
Plot@8phong �. Αp ® Αb2Αp@ðD & �� Range@0.3, 0.7, 0.1D,

abc �. 8Αabc1 ® ð, Αabc2 ® 1000.0< & �� 80.0212, 0.0114, 0.0068, 0.0043, 0.0026<<,
8Θ, 0, Π � 2<, PlotStyle ® 88pCol, Thick, Dotted<, abcCol<D<, ImageSize ® FullD

Out[45]=
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Since they are not directly apparent from the Plot command, let’s see the range of Phong parameters covered in the
right plot:
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In[46]:= Αb2Αp@0.3D

Out[46]= 20.2222

In[47]:= Αb2Αp@0.7D

Out[47]= 2.08163

As we have seen, with an Αabc2 value of 1.75, ABC can mimic Trowbridge-Reitz quite well. With higher values, ABC
can approach the appearance of Phong. (It should be noted that these are much higher than any of the values fitted to
the Matusik dataset by Low et al.; this may indicate that real-world materials do not typically exhibit Gaussian normal
distributions.) With Αabc2 values lower than 1.75, the ABC distribution is even “spikier” than Trowbridge-Reitz; we
will look at a value of 0.5 (a relatively low value for the Matusik dataset fitting performed in the paper by Low et al. –
lower values were only used for very rough surfaces), comparing it to Trowbridge-Reitz (manually adjusted so the
peaks match): 

In[48]:= GraphicsRow@8Plot@8trowbridgereitz �. Αtr ® ð & �� Range@0.5, 0.8, 0.1D,
abc �. 8Αabc1 ® ð, Αabc2 ® 0.5< & �� 882.5, 33.5, 14.0, 5.75<<, 8Θ, 0, Π � 2<,

PlotStyle ® 8trCol, abcCol<D, Plot@8trowbridgereitz �. Αtr ® ð & �� Range@0.2, 0.5, 0.1D,
abc �. 8Αabc1 ® ð, Αabc2 ® 0.5< & �� 84250, 785, 240, 82.5<<,

8Θ, 0, Π � 2<, PlotStyle ® 8trCol, abcCol<D<, ImageSize ® FullD

Out[48]=
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We see that with an Αabc2 value of 0.5, ABC is significantly “spikier” than Trowbridge-Reitz when modeling rough
surfaces (on the left), and extremely so when modeling smooth ones (on the right).

Shifted Gamma Distribution

In[49]:= p22@x_D :=
Αsgd1Αsgd2-1

Gamma@1 - Αsgd2, Αsgd1D

ã
-

Αsgd12+x

Αsgd1

IΑsgd12
+ xM

Αsgd2

In[50]:= sgd =

p22B
1-Cos@ΘD2

Cos@ΘD2
F

Π Cos@ΘD4

Out[50]= ã
-

Αsgd12+J1-Cos@ΘD2N Sec@ΘD2

Αsgd1 Αsgd1-1+Αsgd2 Sec@ΘD4 IΑsgd12
+ I1 - Cos@ΘD2M Sec@ΘD2M

-Αsgd2
�

HΠ Gamma@1 - Αsgd2, Αsgd1DL

First, let’s confirm that it’s normalized, using an analytical integral:

In[51]:= sgdnormf =

Integrate@sgd Sin@ΘD Cos@ΘD, 8Φ, -Π, Π<, 8Θ, 0, Π � 2<, Assumptions ® 8Αsgd1 > 0, Αsgd2 > 0<D

Out[51]= 1
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Yes, it’s normalized. Let’s take a look at various parameter values, spanning the rough-to-moderate part of the range of
values used for fitting SGD to the Matusik database:

In[52]:= plot1@x_D := Labeled@Plot@sgd �. 8Αsgd1 ® ð, Αsgd2 ® x< & �� 81.0, 0.5, 0.2, 0.1<,
8Θ, 0, Π � 2<, PlotStyle ® sgdColD, "Αsgd2 = " <> ToString@xDD

plot2@x_D := Labeled@Plot@sgd �. 8Αsgd1 ® x, Αsgd2 ® ð< & �� 80.0, 0.5, 1.0, 1.5<,
8Θ, 0, Π � 2<, PlotStyle ® sgdColD, "Αsgd1 = " <> ToString@xDD

GraphicsGrid@8plot1 �� 80.0, 0.5, 1.0, 1.5<, plot2 �� 81.0, 0.5, 0.2, 0.1<<,
ImageSize ® Full, AspectRatio ® 0.25D

Out[54]=
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Let’s look at an interactive graph with the parameters covering the range of fitted values for the Matusik database:

In[55]:= Manipulate@Plot@sgd �. 8Αsgd1 ® a, Αsgd2 ® b<, 8Θ, 0, Π � 2<, PlotStyle ® sgdColD,
88a, 0.25<, 0.0001, 1.0<, 8b, 0.0, 1.5<D

Out[55]=
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Finally, let’s compare it with ABC:
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In[56]:= Manipulate@Plot@8sgd �. 8Αsgd1 ® a, Αsgd2 ® b<, abc �. 8Αabc1 ® c, Αabc2 ® d<<,
8Θ, 0, Π � 2<, PlotStyle ® 8sgdCol, abcCol<D,

88a, 0.25<, 0.0001, 1.0<, 8b, 0.0, 1.5<, 8c, 1.0, 1000.0<, 8d, 0.25, 2.5<D

Out[56]=
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