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What is Open Shading Language?
Open Shading Language (OSL) is an open source project started by Larry Gritz at Sony Pictures 
Imageworks.  OSL is a way of describing how surfaces interact with light using a simple but robust 
language that should be familiar to seasoned shader writers, and easy to learn for new users.  OSL is built 
on a foundation of physically based rendering principles and designed to abstract the  material description 
from the rendering method.
  
OSL is an open source project that implements the language speci!cation. e project is a C++ library with 
a programming interface that can be incorporated into a renderer.  is allows a renderer to employ any 
number of techniques to generate imagery, without necessitating intricate and complex shader 
maintenance.  Many BSDF's and shading functions are written into the library, giving renderer developers 
a jump start with production proven shading models and pattern generation tools.  

OSL is hosted on GitHub at https://github.com/imageworks/OpenShadingLanguage

Who is OSL for?
OSL is for Artists... 
OSL shaders are easy to read, simple and elegant.  Physically plausible materials can be described without 
much effort.  Complex patterns and materials can be generated from a suite of tools including noise, splines 
and a variety of functions built into the language.  e reduction in overall code devoted to shaders can be 
quite signi!cant.  For example, our root illumination shader at Imageworks went from thousands of lines of 
C code down to a few hundred lines, while retaining the same feature set and parametrization. 

OSL is also safe to use.  e ability to bring down a renderer or cause NaNs in an image is almost non-
existent in OSL.  When those events do occur, usually, the problem lands squarely on the shoulders of the 
renderer developers.  is makes OSL extremely robust in production environments that work under very 
aggressive conditions. 

Adding production utility functionality is equally simpli!ed in OSL.  AOV's, shadow manipulation, access 
to geometry variables are all built into the OSL speci!cation.  ere is no loss to production versatility in 
using OSL.

OSL shaders can steer advanced rendering techniques without advanced level knowledge, and in many 
cases without re-development of the material description.  is makes deployment and maintenance of 
shader libraries exponentially easier, and increases the cost-effectiveness of shaders over time.  ese shaders 
will suffer less from “version-itis,” or obsolescence; shaders are guaranteed to be portable to virtually all 
OSL supporting renderers.  Because even compiled OSL shaders are stored in a text !le, not tied to any 
hardware or OS platform, or speci!c renderer, they are completely portable across systems and renderer 
versions. e machine code is generated on the $y at runtime. So there is no possibility, as there would be 
with compiled DSO shaders, that a new renderer release could suddenly be incompatible with an old 
shader. We expect an OSL shader (both as source and compiled to .oso) to work with the renderer it was 
intended for, for years, possibly forever.

...And Renderer Developers
Again, OSL is safe to use.  Your renderer will generally not be at the mercy of shaders attempting to do 
things that they were never intended to do.  e number of bug and crash reports due to issues inside a 
shader will be limited to the functionality the renderer provides, not open to the abuse of external 
developers. 



To a large degree, OSL shaders (and .oso !les) should be compatible between renderers, but there are 
several ways in which this is not perfectly true: different renderers may supply different sets of nonstandard 
built-in closures, or may support different ray types, etc. is will only affect a few operations, the vast 
majority of shader nodes in the shader library, for example, could reasonably be expected to work 
identically in almost any conceivable renderer implementation. 

Since OSL shaders are described independently of the rendering method,  developers are free to explore 
new implementations without worry of breaking existing client investment in a shading library. Shader 
library compatibility becomes a virtual non-issue, and developers can change a renderer dramatically 
behind the shield of OSL. And because OSL abstracts the shaders from a low level API, exposed API's can 
be reduced substantially.  

“Men In Black 3” images courtesy of Columbia Pictures. ©2012 Columbia Pictures Industries, Inc.  All rights reserved.
Much of Boris the Animal's hand and the “Weasel” are CG elements rendered with SPI's OSL shader library.

How is OSL different from other shading languages?
Like other shading languages, GLSL, Cg, and RSL, OSL provides a rigidly de!ned framework for 
describing interactions between light and objects.  But there are a few major differences in OSL to these 
other shading languages that will stand out to veteran shader writers.  e !rst, and perhaps the scariest, is 
the lack of a light loop, that is, the inability to directly access light sources in the scene that are affecting the 
material.  e second difference is that an OSL shader does not return color or alpha values to the renderer.  
Rather, Ci, a shaders main output, is a closure variable.  It is important to understand that an OSL shader 
describes how a surface material scatters light to the renderer, it does not report pixel values or execute 
sample compositing.  To that end much of the code in a shader will be dedicated to computing interesting 
and meaningful values as parameters to, and weights of the output closures. 

Networking of OSL shaders is a !rst class concept in the library.  Nodes can be dynamically arranged and 
are evaluated lazily.  Because of the way OSL materials are handled during the render process, optimized 



networks of nodes are nearly indistinguishable from monolithic shaders to the renderer. OSL is also built 
on a foundation of physically-based shading and advanced rendering principles.  OSL presumes correct 
physical units throughout the implementation providing solid ground for physically based shading and 
lighting.  Closures, when evaluated, give radiance values: 

W/m2/sr
Units of radiance, watts per square meter per steradian

is is true for surfaces, emissive geometry, and light sources using OSL shaders.  is consistency is what 
easily allows users of OSL to freely interchange CG light sources, captured HDRI environments, and 
emissive geometry.  We had a terrible time getting these lighting methods to match in the old system, and 
OSL opened the door to development of some highly accurate lighting techniques that previously relied on 
guesswork.  Within Katana, the Imageworks lighting tool, lighters are able to evaluate an acquired lighting 
environment from the !lm set and graphically determine areas of important illumination information.  
ese areas can then be seamlessly, and non-destructively, extracted and promoted to either emissive 
geometry, or direct CG light sources.  e raw set data can also be projected onto reconstructed geometry, 
allowing rendered objects to 'live' in the acquired set.

A captured HDRI environment.  is image can be used as a light source directly or...



... portions of it can be identi!ed and extracted as separate geometry or area light sources.

“e Smurfs” images courtesy of Columbia Pictures and Sony Pictures Animation. ©2012 Columbia Pictures Industries, Inc. and Sony Pictures 
Animation Inc,  All rights reserved.

CG elements lit using the acquired environment and extracted light sources, and shaded using OSL closures.

Unit consistency and energy conserving properties are also what allows OSL to unify the description of 
re$ection, refraction, scattering, emission, and transparency into a single return value of surface shaders, 



not a bunch of separate features and variables to set.  OSL ships with a number of production proven 
physically plausible BSDFs:  Cook Torrance Micro Facet model with Beckmann and GGX distributions, 
Ward Anisotropic.
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is is a naive diagram of how shading used to work in our old system.  e blue boxes represent aspects of 
the process that the renderer has some direct in$uence over.  e grey boxes all take place inside the shader, 
where the renderer has practically no capacity to optimize the computation.  Renderer developers will 
recognize a major Achilles’ Heel with this execution graph in that shader evaluation is recursive.  e 
renderer is essentially locked out of the rendering process once the shader begins execution.  If that shader 
requires information from the rest of the scene, for example, collecting incoming radiance, the shader hands 
off execution to another shader, and so on until the recursion loop is terminated.  API's can help in limiting 
the amount of 'unknown' work that a shader does, but ultimately, and especially in open C-based systems, 
this can never be guaranteed.

Below is an equally naive diagram of the shading pipeline with OSL, using Imageworks' same path tracing 
renderer (Arnold) :
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ere are quite a few differences in this diagram from the previous, and the introduction of a few 
ambiguities.  Notice the lack of recursion within the shader. is is very important because it means is that 
execution order and the integration of those results can be left entirely up to the renderer.  Once a shader 
network is executed, either individually or as part of a collection, the renderer is handed a list of closures 



and weights describing the material.  At this point the renderer can take over and make interesting 
decisions about how, and when, to integrate the material descriptions to arrive at a !nal output value.  
Closures can be reasoned about and analyzed by the renderer, evaluated (closure + lights + view direction + 
samples = !nal color), sampled accurately and efficiently, and also can be stored for later evaluation.  is 
separation of the shading and integration stages is key to effective multiple importance sampling.  Other 
example uses include: interpolation, ray sorting/reordering, or rapid relighting by re-evaluating the closures 
with new lights rather than recomputing all shading.

  e general purpose shading network at Imageworks has stayed topologically familiar through multiple generations of the 
underlying shader library.  is is a screen shot of the Katana node graph of an OSL shader.

e testrender command line utility is very useful for testing new shaders  



How OSL Works:  Foundations and De"nitions
OSL is a simple but powerful language that reduces complex shading principles to manageable functions.  
Ultimately, a shader is responsible to delivering a material description in the form of a weighted sum of 
closures. 
  
In computer science and language design, a closure is a packaged up bit of code -- say, a function to call and 
the arguments to give it -- that can be passed around as an object, entirely separate from the evaluation 
(execution) of that function.  at's really what's going on with OSL material closures: instead of choosing 
samples and evaluating the BSDF for a particular direction and returning only the resulting color from a 
shader (i.e., the status quo way), OSL is returning an object that describes the procedure for evaluating the 
BSDF, with everything baked down to numeric parameters and weights except for the sampling itself.  
Once you have this (ideally view-independent) package, the renderer can sample it intelligently, evaluate it 
for any (or multiple) directions, stash it away somewhere, save it for later, whatever.

A closure in OSL is a symbolic representation of the way a surface (or volume) scatters and emits light. e 
representation is opaque to the shader writer, and the renderer is free to implement them as it chooses.  
OSL closure functions are a single, common interface to the BRDF, sampling, and PDF functions of 
shading models, a number of which ship with the project, such as the widely used Cook-Torrance micro-
facet model.   At SPI the most popular distribution is Beckmann.  Represented in OSL, this closure 
function looks like:
  microfacet_beckmann(N, roughness, ior...) * weight
Material transparency and refractions are closures treated like any other BSDF in the shader, and I will 
demonstrate a practical example of this later on.  

It is important to note that while I focus here on BSDF closures, OSL supports closures for other shading 
effects as well.  For example, closures for sub-surface scattering BSSRDF’s, shader and renderer debugging 
and shadow mattes are also possible. 

 
A Brief History and e State of e Art
In my Physically Based Shading presentation for Siggraph 2010 [1], I described a shading system developed 
at SPI that evolved from a combination of dissatisfaction with a pass-based approach, and a desire to utilize 
the path tracing renderer Arnold.  At that time, the Arnold renderer was a being co-developed with Solid 
Angle.  Arnold had seen limited use between the production of the animated features “Monster House,” in 
2006, and “Cloudy With A Chance of Meatballs” in 2009.  For visual effects work, it was determined that 
a new set of shaders would have to be developed to make greater use of physically based shading principles.  

is shading system was built as a large set of C plug-ins that were chained together into feature-rich 
networks.  It went through a number of generations as it was used over the course of “Alice in 
Wonderland”, “2012”, “Green Lantern”, “e Smurfs” and “Arthur Christmas”.  is shading system 
packed a lot of technology into it: All of our basic illumination models and their sampling routines were 
built into the shaders directly. Secondary outputs, including some geometric data, were handled internally 
by a complex method of message passing between materials. Illumination effects that required sampling of 
the scene were all hand-coded to do so, as in the case of traced subsurface scattering.  Material layering, 
while a powerful tool for look developers, became burdensome as it saw more widespread use and abuse.  
 
At the same time issues with the shader library maintenance was becoming problematic due to varying 
show demands.  Feature creep and inefficiency in the shading system alone was reaching critical levels.  e 



renderer developers were somewhat boxed in by concerns over breaking a delicate production shading 
system.  Essentially, the shaders hijacked the renderer, which was by design, but we were realizing the 
liability in that decision. 

From a renderer developer's stand point, the greatest fault with this shading system was not merely the 
majority of computation time spent in the shaders.  e shaders were an inscrutable black box to the 
renderer, and so even the parts that the renderer was responsible for were often done by brute force because 
the renderer couldn't make intelligent choices based on knowledge of what the shaders were doing.  Various 
renderer internals were so over-exposed to the shaders themselves that the rendering team was severely 
constrained in its ability to change internals or refactor the renderer code in any way, which in many cases 
was standing in the way of either performance improvements or increased ability to easily maintain the 
code. Between the fact that half the algorithm was either encoded in the shaders themselves, or the shaders 
were dependent on certain ways of doing things, we really had no ability to try different rendering 
algorithms (experimenting with something like BDPT was a non-starter).  So the rate of algorithmic 
improvement of the renderer was highly constrained.

Before “Green Lantern” production started in earnest, the shading department had started working with 
early versions of the OSL library that had been shoe-horned into our production build of the Arnold 
renderer.   Initial results were very promising.  We were able to rapidly meet feature requirements for the 
“Green Lantern” look development teams, and the quality of the results were a marked improvement over 
it's predecessors.  Performance, however, became an unavoidable issue, as optimizations were not in place 
and would not be available in time to  meet the needs of the production.  A novel compromise was reached 
that allowed us to stage OSL’s release to the facility, and also to divide and conquer aspects of the system 
that needed attention.  e core OSL-side BSDF's were made available to the C API essentially allowing us 
to utilize the robust importance sampling routines from within our existing C shading framework.  In 
addition, integration of both the light loop and the sampling loop were all handled by the renderer, at the 
shader's request.  is hybrid OSL/C solution delivered the familiar interface of the older shading system 
with the look and feel of the new sampling and illumination methods, and satisfactorily met the rendering 
needs of the show.   We were able to rigorously production test and re!ne the core shading functionality of 
OSL while the OSL and Arnold teams continued to develop the infrastructure, feature set, and 
optimizations that would allow us to switch completely over to OSL.  All of these developments are 
re$ected in the current public OSL trunk.

“Men In Black 3”, “e Amazing Spider-Man”, and the animated “Hotel Transylvania”, would be the !rst 
shows at SPI to truly push OSL on a real production level.  While “Green Lantern” was wrapping up, 
artists for these !lms were starting to get their !rst taste of a purely OSL shading system.  e reactions 
were extremely positive from the start, and remained so during the run of all the productions.  OSL's 
optimizations had improved to the point where it was actually signi!cantly outperforming the equivalent C 
shaders by somewhere in the neighborhood of 20% or so as measured by overall rendering time.  ese 
three !lms were rendered simultaneously, solely with the OSL shading system.

For all shows we were able to quickly and effectively deliver novel solutions to unique problems in look 
development and shot rendering.  Fully path traced subsurface single scattering was introduced as well as 
new shading models for hair.  It required very minor changes to the shading system to deploy, and pushed 
the looks of our characters into new areas of realism; we could now adequately represent subcutaneous 
occlusion in translucent materials, such as bones and cartilage.



“Hotel Transylvania” images courtesy of Sony Pictures Animation. ©2012 Sony Pictures Animation Inc.  All rights reserved.
e character of “Goopta” utilizes ray traced single scattering translucency almost exclusively.

At SPI, we were afforded the opportunity to step back from our shading system, critically scrutinize it, and 
make dramatic changes.  By this time, OSL was highly informed by how we were working in the older 
system.  In a lot of ways we could perfectly replicate the familiar shading system, and in many cases that is 
just what we did.  However, a lot of the features that would be normally coded directly in the shader, 
became a managed part of the renderer and exposed via OSL functions or closures.  OSL also allowed us to 
rapidly prototype, test, re!ne, and release ideas without a complex and lengthy build and quali!cation 
procedure.  In the summer of 2011, the publicly exposed C API for writing shaders in the Imageworks 
renderer was entirely removed.

e OSL Experience -or- How I Learned to Stop Worrying and Love the Closure
e experienced shader writer at !rst might see OSL as a threat to the $exibility and power.  At SPI, we had 
many reservations about using the new system, most of which was driven by fears of an unknown.  ings 
we got used to supporting in C shaders were being implemented directly inside the renderer.  is included 
core features of the shaders such as illumination and sampling loops, but also extended into specialty and 
utility features, such as subsurface scattering and secondary outputs. Shaders could no longer arbitrarily 
trace rays at any point in the rendering process, no matter how benign the stated intention.  e 
perception, from the point of view of the shader writers, was that we were undergoing a huge loss of 
capability and $exibility.

e transition was difficult for the renderer developers as well.  Support requests for shader and renderer 
issues in the young system largely fell on the renderer development team to address.  is meant that  
productions, who would normally go through the shading department, were now applying pressure to a 
development team that was normally sheltered from the panic that can ensue during a project.  On top of 
re!ning existing functionality, optimizing the system to meet performance goals, and !elding the needs of 
the shading department, the Arnold team had a lot to handle.  

At a certain point features and behaviors inside OSL stabilized and the delineation of responsibilities 
between the teams shifted but settled.  e shading department took on a more active role in developing 



new cutting edge features directly in the renderer, as well as becoming more engaged in production.  e 
rendering team also became more engaged in production and helped to de!ne best practices.  We realized 
quite quickly that new feature implementation costs decreased dramatically.  New rendering methods for 
shading hair, thin !lm interference, subsurface scattering were all developed, tested and deployed to 
productions in a matter of weeks.  As shader writers, we were able to meet the needs of artists much faster, 
and in ways that would have previously required much more extensive development schedules.

Our OSL materials are doing much more per sample than their older C counterparts, and they are 
measurably faster. Where previously we would take a hit to render speed as material complexity increased, 
we could now count on OSL's built in optimizations to cull unimportant code from the execution path.  In 
addition, network complexity signi!cantly reduced; because many features now lived renderer side, they no 
longer needed exclusive representation in shader networks.

ings we were predicting would be problematic, turned out not to be.  e inability to trace rays from 
inside a shader arbitrarily was met with a compromise with the trace() function.  is function allows us 
to immediately trace a ray and collect information about the scene in a rigidly managed way, it does not 
shade or integrate.  While it has been used for experimental shaders and non-photorealistic tests, this 
particular function has been utilized in only one specialized production shader. 

OSL opened the door to unprecedented rapid prototyping and experimentation in the shading system.  
New interface ideas can be rapidly mocked up, tested and critiqued by a large number of potential users.  
Different illumination models and patterns can be easily networked together, tested, and released into the 
wild without much concern for adverse consequences.  

At Imageworks we are also realizing the rapid development of new rendering techniques.  Imageworks' 
volumetric rendering features in Arnold (based on the work of Chris Kulla and Marcos Fajardo [2]) fully 
leverages the OSL shading strategy.  e utilization of these features in production shaders is near-instant.  
For example, the dipole subsurface scattering implementation used on !lms up until “Hotel Transylvania,” 
relied on a traditional method of caching radiance values in a point cloud.  A recently developed purely ray-
traced scattering routine with the same interface, and exactly the same look, required no shader 
modi!cation to deploy.  e bene!ts of this development were immediately leveraged in production with 
great success, and is now the default method for all of our subsurface scattering needs.  

Of course, as a shader writer, having access to the renderer developers is a huge bene!t.  Being able to 
bounce ideas off of the OSL and Arnold developers offers a level of feedback that can be hard to acquire 
with commercial software.  Given that, the public OSL project is exactly the same library we use in the SPI 
renderer, and to that end the public project bene!ts from the constant feedback loop that the developers 
have with production shader writers.  OSL is deployed to production straight out of the public GitHub 
master development trunk and any specialized shading functionality speci!c to SPI exists renderer side. e 
code for the OSL libraries themselves is easily understood, and extensible, certainly more so than most 
rendering engines. 



“e Amazing Spider-Man” images courtesy of Columbia Pictures. ©2012 Columbia Pictures Industries, Inc.  All rights reserved.
e Lizard and Spider-Man were among the very !rst creatures rendered with OSL shaders, the Lizard being one of the most 

complex creatures ever built at Imageworks. 

Writing OSL Shaders, A Practical Example
Writing OSL shaders is remarkably simple, and familiar if you've ever written a shader in RSL, C or GLSL.  
In this section we will construct a few simple yet practical shaders that adhere to physically plausible 
shading principles.  I will provide a very brief overview of the material that is covered to a much greater 
extent in the osl-languagespec.pdf document available with the distribution.
 
OSL mostly resembles C in its syntax.  All of the familiar math operators, logical constructs and data types 
are supported. OSL supports include !les, pre-processor de!nitions and macros, as well as specialized 
support for meta-data.  Meta-data tags are useful for specifying user interface hints to host applications.   
Widget styles, value ranges and help text, are common tags attached with parameter meta-data.



OSL metadata tags are used to partition parameters and create widgets in Katana.

Standard data types supported are: int, float, color, vector, point, matrix, and string.  All 
of these types are supported as parameter types as well.  

As mentioned above, the specialized closure type is used to store references to closure functions and is the 
primary delivery method of a material description to the renderer.  At declaration closure variables do 
require a subtype, however at this time only color is supported.  Closure variables are subject to a number 
of special rules owing to the unique data they represent.  Closures can be weighted by $oat and color data 
types, and closure variables may only be added together.

Static arrays and variable structures can be constructed from any of the supported data types. OSL does not 
yet support dynamic arrays.

e de!nition of shader parameters for OSL shaders is straightforward.  All parameters require a default 
value so as to ensure un-ambiguous results.  Closure parameters can use a default of 0.  Parameter 
declarations can include meta-data to provide user interface hints in host applications:

    color   Diffuse_Color = 1
       [[   string help = "Diffuse closure color", 
! ! float min = 0, float max = 1 ]], 

Parameters that are tagged as output parameters are made available to connect to any other parameter on 
any other node in the shading network.  e reserved global variable Ci is of type output closure 

color and is used to report the !nal material closures to the renderer.  

A Simple Shader
Here is a complete listing for a shader that renders a texture mapped diffuse appearance:



surface
example_shader_1
! [[string help = “Simple texture mapped diffuse material”]]
(
! string texture_name = “”
! ! [[string help = “A texture file name”]]
)
{
! color paint = texture(texture_name, u, v);
! Ci  = paint * diffuse(N);
}

For two lines of code in the body, this shader purports to do quite a lot:  a user parameter texture name is 
read in using the u and v texture coordinates from the geometry.  at value provides the weight of a 
closure function for diffuse re$ectance of both direct and indirect illumination.  e core component of 
this shader is the diffuse(N) closure which represents a Lambertian re$ectance function.  e internals of 
the closure are left to the implementation in the renderer, however the testrender program in the OSL 
project provides a few closure examples for reference.   

Let's extend this shader by providing a simple Phong specular model.  We need to add the specular 
exponent parameter which is required by the function.  en all that is left is adding a closure to the Ci 
variable:

surface
example_shader_2
! [[string description = “Simple texture mapped diffuse material”]]
(
! string texture_name = “”
! ! [[string help = “A texture file name”]]
! float specular_exponent = 7
! ! [[string help = “The exponent of the specular reflection”]]
)
{
! color paint = texture(texture_name, u, v);
! Ci  = paint * diffuse(N) + phong(N, specular_exponent);
}

is shader is problematic now in that the amount of energy returned from the surface is potentially more 
than what is incident at the surface.  We can rectify this by using an energy conserving microfacet closure, 
and by balancing the weighting of the closures  individually.  e following section will demonstrate these 
solutions in more complex shader examples.

A Physically Plausible Glass Shader
In physically based shading contexts one of the most challenging problems is accurately representing glass 
and other highly transmissive materials.  A good glass shader should provide energy conservation between 
its re$ective and refractive components, support total internal re$ection, and properly represent real world 
index of refraction behaviors.  In advanced rendering schemes, such as  bi-directional path tracing or 
metropolis light transport, physically accurate glass materials should also exhibit caustics.  Accomplishing 



all of these goals, on top of providing production $exibility is exceptionally difficult.  Consider the 
following OSL shader:

surface 
example_shader_3
! [[ string help = “Simple dielectric material” ]]
(
! color Cs = 1
! ! [[ string help = “Base Color”,
! !     float min = 0, float max = 1 ]],
! float eta = 1.5
! ! [[ string help = “Index of refraction” ]],
)
{
! if( backfacing() )
! {
! ! Ci = refraction(N, 1.0 / eta) + reflection(N, 1.0 / eta);
! } else {
! ! Ci = refraction(N, eta) + reflection(N, eta);
! }
! Ci *= Cs;
}

is shader returns a refraction and re$ection closure weighted by a user-speci!ed color.  Both closures 
receive the same parameter values, ensuring conservation across re$ected  and transmitted energy.   In the 
case that the surface normal is facing away from the viewing direction, the index of refraction is inverted.  
is condition is detected by the OSL function backfacing(). Total internal re$ection is accomplished by 
adding the re$ection closure for the back facing case. 
While this shader does satisfy many of the requirements for a glass appearance, it is far from production 
friendly.  We can $esh out the capabilities of this shader by supporting roughness, bump mapping and user 
options to control contextual behavior:

surface 
example_shader_4
   [[ string help = “A better dielectric material” ]]
(
   color Cs = 1
      [[ string help = “Base Color”,
         float min = 0, float max = 1 ]],
   float roughness = 0.05
      [[ string help = “surface roughness”]],
   float eta = 1.5
      [[ string help = “Index of refraction” ]],
   int enable_caustics = 0
      [[ string help = “Enables indirect lighting”]],
   int enable_tir = 1
      [[ string help = “Enables total internal reflection”]],
   float bump_value = N
      [[ string help = “Input normal” ]]
)
{
   if( enable_caustics || (!raytype(“glossy”) && !raytype(“diffuse”)) )
   {

!       vector bump_normal = normalize(calculatenormal(P + N*bump_value));

      if( backfacing() )
      {
         Ci = microfacet_beckmann_refraction(bump_normal, roughness, 1.0 / eta );



         if( enable_tir)
!          {

            Ci += microfacet_beckmann(bump_normal, roughness, 1.0 / eta);
         }
      } else {
!   !      Ci = microfacet_beckmann_refraction(bump_normal, roughness, eta) +

!               microfacet_beckmann(bump_normal, roughness, eta);
      }
      Ci *= Cs;
   }
}

is shader demonstrates a number of capabilities of the OSL shading system.   We have changed the 
primary closure type from the mirror-like reflection() and refraction(), to the more physically 
interesting microfacet_beckmann() and microfacet_beckmann_refraction().  ese closures take 
an additional roughness parameter to control how 'blurry' the specular qualities are owing to microfacet 
variation on the surface.  In the same way that re$ection and refraction will balance singular ray evaluations 
given the same parameter values, the microfacet closures do the same with like roughness values. 

We have also introduced a trap for indirect illumination to curtail evaluation of the shader in both glossy 
and diffuse contexts.  e OSL function raytype() is used to detect the renderer state at the shader’s 
evaluation.  By passing the strings “glossy” and “diffuse” to raytype(), we are preventing a potential 
explosion in traced rays for secondary light paths, since those ray types are likely to represent multiple 
rather than singular rays.  We could make our shader more efficient by specifying entire branches of the ray 
tree:

(!raytype(“path:glossy”) && !raytype(“path:diffuse”))
 
By pre!xing 'path:'  to the ray type, we are asking the renderer whether any ray in the current evaluations 
history matches the speci!ed type.  In this case, if any ray in the tree leading to this evaluation was of type 
glossy or diffuse, the shader will not evaluate.  It is entirely possible to do away with this check if the 
renderer provides its own detection of potential issues.  raytype is an example of an OSL function that 
exposes renderer internals and therefore behavior of this function is not guaranteed to be portable.  Shaders 
should be written such that when the call fails (unknown ray type) - the material takes no shortcuts and 
returns the full material. In this way the shader can be future-proofed to new rendering algorithms that 
classify rays differently (or don't use rays at all!).

It's important to note that we've added a number of conditionals into this shader now.  e shader writer  
should be aware that there is no run-time cost to conditionals;  based on parameter values, almost all of 
them will be folded away by OSL's run-time optimizer which will know the !nal values of all the shader 
parameters by the time it is generating the actual executable code for the shader network.

backfacing() and raytype() are two functions that provide the shader some information about the 
state of the renderer and the scene at the time of evaluation.  Two other functions that retrieve render state 
information are surfacearea(), which is speci!cally for area lights, and getmessage(), which is capable 
of retrieving information about ray intersections when used in conjunction with traceprobe().

e above shader also provides a new input parameter, bump_value.  is value is used to offset P, and 



passed as a parameter to the calculatenormal() function1, which returns a new vector representing the 
normal at this new point.   is new parameter allows us to connect another shader with an output float 
type parameter, such as a basic 3d Perlin noise pattern:

shader
simple_noise
(
! float frequency = 2,
! float amplitude = 1,
! output float out_noise = 0
)
{
! out_noise = noise(P * frequency) * amplitude;
}

is shader is a simple pattern generator.  Since it does not set Ci, it cannot be used to render directly but 
must be incorporated into a network that will use the value of out_noise as a weight or parameter to a 
closure. 

A More Complex Example
e goal here is to create a fairly generic shader that supports diffuse, specular, bump, refraction as well as 
texture handling.  Such a shader should be a suitable production platform, provided it meets the artistic 
needs of the user base.  To this end, we should be explicit about the kinds of controls we want to provide:

• We will need a base color control for the diffuse aspects of the material
• Specular qualities such as intensity, roughness and index of refraction, as well as independent 

color control.
• Bump magnitude, presuming bump patterns are provided by an external source, we want a way 

to control the apparent height of the bump locally available.
• Transparency mapping should be supported.  Refraction support should be physically accurate 

and follow the specular settings, but allow for some artistic manipulation.

In addition to this list, every aspect of this shader should be texture mappable to the extent that it can.  
ere are two approaches we can take to satisfy this requirement.  e !rst, and probably the most efficient 
method is to use an external set of texturing nodes and use OSL's shading graph to connect  nodes 
together.  is will ensure a degree of consistent behavior and potentially circumvent a lot of repetitive 
coding.  An alternative way would be to make use of preprocessor macros and de!nitions to handle the 
generation of texturing parameters and functionality.  While the former is an attractive production 
proposition, the latter affords the capacity to demonstrate more features of OSL:

Below is a partial de!nition of a preprocessor macro that generates texture parameters:

#define TEXTURE_PARAMS(MAPNAME) \
    string Texture_ ## MAPNAME ## _Name = ""\
        [[ string widget = "filename", string help = "A texture file name", \

1  It is worth mentioning that the OSL implementation of calculatenormal() is different from traditional 
implementations of RSL in that calls which require derivatives do not require the shading system to run the 
shader on a grid of points internally. Analytical derivatives are tracked by the runtime automatically from a single 
shading point, including through loops and conditionals.



           string page = #MAPNAME ".Texture"]],\
    float  Texture_ ## MAPNAME ## _Blur    = 0.0\
        [[ string help = "The blur amount, as a portion of the image size.", \
           string page = #MAPNAME ".Texture"]],  \
! ! ...

This macro uses the tag MAPNAME to populate a set of parameters common to any texture.
Note that the metadata tags used here are specific to Katana.  The 'page' metadata tag specifies a named 
group of parameters that are collectively displayed in the user interface.  

We populate the texture parameters by referencing this macro in the surface shader parameter 
declaration list:

surface
example_shader_5
(

    color   Diffuse_Color = 1
       [[   string help = "Diffuse closure color", 
            float UImin = 0, float UImax = 1]],

    TEXTURE_PARAMS(Diffuse)
)
...

This will result in a list of parameters that looks like:

color   Diffuse_Color
string  Texture_Diffuse_Name
float   Texture_Diffuse_Blur
...

Texture lookups will be handled by a locally defined function that calls texture().  We will want to 
wrap this local function in another macro, so that we can make use of the MAPNAME tag in the body of 
the shader:

#define TEXTURE_EVAL(MAPNAME, RESULT)\
    evaluateTexture(\
    Texture_ ## MAPNAME ## _Name,\
    Texture_ ## MAPNAME ## _Blur,\
    Texture_ ## MAPNAME ## _Width,\
    Texture_ ## MAPNAME ## _Wrap_Mode,\
    Texture_ ## MAPNAME ## _Scale_U,\
    Texture_ ## MAPNAME ## _Scale_V,\
    Texture_ ## MAPNAME ## _Flip_U,\
    Texture_ ## MAPNAME ## _Flip_V,\
    In_U,\
    In_V,\
    RESULT);

is macro takes the MAPNAME tag and hashes it into the same parameter names as we de!ned in the 



TEXTURE_PARAMS macro and passes them as arguments to a generic evaluateTexture function.  e RESULT 
is storage for whatever the texture lookup returns, usually this will be a color or a $oat, but other types are 
possible.  OSL follows an extensive but well de!ned set of conversion rules. 

At this point, we've replicated the functionality of our !rst example shader, but extended the controls quite 
a bit.  Our texture macros allow user level control over the texture lookup including blur and tiling.  We 
can combine and extend this to include the work we did in the glass shader example.  By incorporating the 
bump mapping and specular parameters our shader interface has grown quite a bit:

surface
example_shader_5
(

   color   Diffuse_Color = 1
      [[   string help = "Diffuse closure color", 
           float min = 0, float max = 1]],

   TEXTURE_PARAMS(Diffuse)
   
   float   IOR = 1.33
      [[   string help = "The index of refraction for specular effects.", 
           string page = "Specular"]],

   float   Roughness = 0.2
      [[   string help = "The surface roughness for specular effects.", 
            string page = "Specular"]],      

   color   Specular_Color = 1
      [[   string help = "Color tint of specular reflections.", 
           string page = "Specular"]],

   TEXTURE_PARAMS(Specular)

   float   Kt = 0
      [[   string help = "Transmissive, or refraction, closure weight.", 
           string page = "Refraction"]],   

   color   Refraction_Color = 0
      [[   string help = "Refraction closure color", 
           string page = "Refraction"]],        

   TEXTURE_PARAMS(Refraction)
   
   float   Opacity = 1
      [[   string help = "The overall opacity of the surface", 
           string page = "Opacity"]],

   TEXTURE_PARAMS(Opacity)

   float   Kbump = 0
      [[   string help = "The amount to bump the surface by", 
           string page = "Bump"]],

   TEXTURE_PARAMS(Bump)



)

Let's begin the body of the shader by evaluating the bump parameters and storing the new shading normal.  
We will use the TEXTURE_EVAL macro we de!ned earlier to read a bump texture if available:
      
! float  totalOpacity = 1;
! normal Ns = N;

! // Opacity
! TEXTURE_EVAL(Opacity, totalOpacity)
! totalOpacity *= Opacity;
! totalOpacity = clamp(totalOpacity, 0, 1);

! // Bump
! if(Kbump) {
          float bumpTexture = 0;
    !     TEXTURE_EVAL(Bump, bumpTexture)
          bumpTexture *= Kbump;

          if(bumpTexture) {
!        point Pbump = P + normalize(Nshading) * bumpTexture;
             Ns = normalize(calculatenormal(Pbump));
    !     }
! }

e variable Ns now stores the normal we will want to use for the remainder of the shader computations.  
e variable totalOpacity contains the combined weighting of the user parameter and the texture map, 
clamped to a valid range.

e other textures we read will act as weights on each illumination component.  So for each illumination 
component, we want to create a closure variable:

closure color diffuseClosure = 0;

As stated, there isn't much we can do with a closure variable except to add other closures into it, and weight 
it by color or $oat quantities.  is particular closure variable will store the diffuse illumination component.  
Let's use a simple Lambert diffuse and weight it by the Diffuse texture map as well as the 
Diffuse_Color parameter:

color diffuseTexture = color(1);
TEXTURE_EVAL(Diffuse, diffuseTexture);
diffuseClosure = diffuse(Ns) * Diffuse_Color * diffuseTexture;  

For the specular model of our shader, we will use the same Cook-Torrance specular model we used in the 
glass example, microfacet_beckmann(),  and the corresponding refraction closure.  Since our shader is 
potentially transparent, and it is possible we will be rendering back facing geometry, we will also add some 
logic to invert the index of refraction when necessary:

float eta = IOR;
if(backfacing()) eta = 1.0/IOR;

color specularTexture = color(1);



TEXTURE_EVAL(Specular, specularTexture)
closure color specularClosure = microfacet_beckmann(Ns, Roughness, eta) * 
Specular_Color * specularTexture;

color refractionTexture = color(1);
TEXTURE_EVAL(Refraction, refractionTexture)
closure color refractionClosure =  microfacet_beckmann_refraction(Ns, 
Roughness, eta) * Refraction_Color * refractionTexture *Kt;

Transparency is simply another closure.  We call it with a weight that represents how transparent the 
material is:

closure color transparentClosure = transparent()*(1.0-totalOpacity);

It now remains to collect the closures and add them into Ci, attenuating the results for opacity:

Ci = (diffuseClosure + specularClosure + refractionClosure) * totalOpacity +  
transparentClosure;

In addition to adding the ray type checks for glossy and diffuse, such as we did in example shader 2, we can 
test for shadow contexts and make sure we do the minimal amount of computation possible:

    if(raytype("shadow")) {
        Ci = transparentClosure;

    } else {
! …

ere is much more we can do with this shader to make it more efficient, and more physically plausible.  
For example, we can add $oat coefficients as a convenience for balancing the weighting of the specular and 
diffuse components, or go a step further and balance the weights internally.  We can  add functionality to 
allow users to switch specular models.  We can (and probably should) invert the refraction coefficient Kt 
and attenuate the diffuse component, since it makes physical sense to do so.  is shader can be extended in 
many more ways to increase its capabilities.  Adding translucence, emission, subsurface scattering and other 
illumination models is as easy as adding the appropriately weighted closures to Ci.

In some production environments it may be appropriate to use a node-based approach to providing 
generalized shader functionality.  While the texture evaluation macro de!ned in the above shader is a 
convenient way to add texture mapping to a shader it would be far more $exible to defer these operations 
to an external node.  Having all of the texture lookup work take place separately from the main 
illumination logic would easily allow for more extensive texture mapping options, and simplify the code of 
this particular shader. As stated above, there is no penalty for providing functionality as an external node, 
the run-time optimizer will collect and condense all of the operations in the shading network as a whole.

Debugging OSL Shaders
OSL shaders are easy to debug owing to the readability of the code, and the legibility of the syntax checking 
of oslc.  Render time debugging of OSL shaders in operation is not quite as straightforward, since renderers 
may implement some features differently.  OSL provides a printf() function that allows a shader to print 
values during evaluation, including closure statements.  For example, the following statement:



 printf(“Ci: %s”, Ci);

could yield the following information about a sample at render time2: 

“e Amazing Spider-Man” images courtesy of Columbia Pictures. ©2012 Columbia Pictures Industries, Inc.  All rights reserved.
In some cases it was necessary to print out the resulting closure list from a material to !gure out exactly what was going on

[osl-core] Ci: (0.02, 0.033, 0.02) * microfacet_beckmann ((-0.02, 0.47, 0.88), 
0.05, 1.33)
! + (0.08, 0.07, 0.05) * debug ("Surface_Color")
! + (0.05, 0.06, 0.05) * microfacet_beckmann ((-0.02, 0.47, 0.88), 0.11, 1.33)
! + (0.08, 0.07, 0.05) * debug ("Surface_Color")
! + (0.04, 0.03, 0.02) * diffuse ((-0.02, 0.47, 0.88))
! + (1, 1, 1) * microfacet_beckmann_refraction ((-0.02, 0.47, 0.88), 0.6, 1.27, 
"absorption", (2.93, 4.44, 6.22), "scattering", (0.41, 0.60, 0.63), "eccentricity", 
0)
! + (0.02, 0.03, 0.02) * microfacet_beckmann ((-0.02, 0.47, 0.88), 0.22, 1.33)
! + (0.08, 0.07, 0.05) * debug ("Surface_Color")

Shaders can also provide a number of debug capabilities such as setting extra output values, or messages 
(using the setmessage() and getmessage() functions) that can be re-directed to Ci.  At Imageworks we 
employ this capability to provide shader writers, look development artists and lighters a way to inspect 
certain intermediate results and other things that help them diagnose problems.

Render time statistics provide useful information about the status of OSL during execution.  Optimization 
statistics are printed that let a users know how many symbols and operations were optimized out of the 
shading network:

INFO: Optimized shader group: New syms 5/11 (-54.5%), ops 2/6 (-66.7%)
INFO:     (0.12s = 0.00 spc, 0.00 lllock, 0.03 llset, 0.00 ir, 0.08 opt, 0.01 jit)

2 Decimal precision is truncated for readability in this example.



is is a very simple shader that generated 11 symbols, reduced to 5, and 6 operations, reduced to 2, after 
the user parameters were populated.  Let’s look at a more extreme production example:

[osl-core] Optimized shader group /root/world/geo/lizard_hi/root/lizard_hi_cn_body_vis/
lizard_hi_cn_body/lizard_hi_cn_bodyShape:arnoldSurfaceShader:
[osl-core]     New syms 7607/413411 (-98.2%), ops 21816/732837 (-97.0%)
[osl-core]     (4.78s = 1.35 spc, 0.00 lllock, 0.01 llset, 0.22 ir, 2.39 opt, 0.81 jit; 
local mem 42KB)

In this example from a “Spider-Man” production render log file, a fairly massive shader network (over 
700,000 ops!) is reduced to an instruction set of 21,816, a fraction of the original.  This information lets 
us know how much of the shading network is being used and how long the optimization step is taking 
(almost 6 seconds, not long at all).  In terms of evaluating extensive render times,  this can be used to 
verify the number of instructions present in a given shader network at run-time.  Note that these 
statistics are displaying the reduction of a group of shaders networked together, not individual shaders.  
So while 700,000 ops may sound huge (it is) those ops are contained within numerous individual 
shaders within a network, and many of those shaders may never actually be used depending on user 
options.

End of frame rendering statistics gives vital information about OSL’s resource usage.  These statistics 
can help identify problems with material assignment, shader use and overall shader performance.  
Consider the following end-of-frame statistics from the same render that provided the above run-time 
optimization: 
 
OSL ShadingSystem statistics (0x395ba20)
   Shaders:
     Requested: 6957
     Loaded:    59
     Masters:   59
     Instances: 6957 requested, 6957 peak, 6957 current
   Shading groups:   31
     Total instances in all groups: 6957
     Avg instances per group: 224.4
   Shading contexts: 8 requested, 8 peak, 8 current
   Compiled 31 groups, 6957 instances
   After optimization, 5730 empty instances (82%)
   After optimization, 6 empty groups (19%)
   Optimized 5823785 ops to 109039 (-98.1%)
   Optimized 3305863 symbols to 37625 (-98.9%)
   Runtime optimization cost: 50.13s
     locking:                   26.35s
     runtime specialization:    9.95s
     LLVM setup:                0.48s
     LLVM IR gen:               0.81s
     LLVM optimize:             8.22s
     LLVM JIT:                  4.26s
   Regex's compiled: 0
   Largest generated function local memory size: 42 KB
   Memory total: 329.2 MB requested, 80.6 MB peak, 14.1 MB current
     Master memory: 4.3 MB requested, 4.3 MB peak, 4.3 MB current
         Master ops:            2.0 MB requested, 2.0 MB peak, 2.0 MB current
         Master args:           331 KB requested, 331 KB peak, 331 KB current



         Master syms:           2.0 MB requested, 2.0 MB peak, 2.0 MB current
         Master defaults:       20 KB requested, 20 KB peak, 20 KB current
         Master consts:         13 KB requested, 13 KB peak, 13 KB current
     Instance memory: 324.9 MB requested, 76.3 MB peak, 9.7 MB current
         Instance syms:         318.6 MB requested, 70.0 MB peak, 3.4 MB current
         Instance param values: 2.1 MB requested, 2.1 MB peak, 2.1 MB current
         Instance connections:  2.7 MB requested, 2.7 MB peak, 2.7 MB current
     LLVM JIT memory: 4.1 MB 

Here we see that the total overhead for optimization to render-time was about 50 seconds.   Timings are 
measured across all threads, so for this 8-thread render the optimization cost would have been around 6 
wall-clock seconds.  The total amount of memory requested to store the shaders, networks and 
associated data was 329 MB.   The scene consisted of 31 groups, or networks, totaling 6,957 individual 
instances of 59 distinct shaders.  After optimization, the scene only required 25 networks and a fraction 
of the overall shader instances.  

“Men In Black 3” images courtesy of Columbia Pictures. ©2012 Columbia Pictures Industries, Inc.  All rights reserved.
e entirely CG New York City was one of the most challenging initial trials for OSL.

Closure 
is document is intended to be in part anecdotal evidence of the success of OSL in production, as well as 
an introduction to the nuts and bolts of a new, and evolving, shading language speci!cation.   e 
implementation of OSL in the public project is already very rich and versatile, in ways that I have not 
covered here.  For example, there is functionality to read numerous !le formats for use as textures or generic 
data, such as XML. e speci!cation also continues to grow and evolve; there will eventually be the 
capacity to author closures within the OSL language itself.  is alone will greatly increase the capacity for 
shader writers to de!ne new BSDF's, extend existing ones, and accomplish unforeseen, potentially non-
physical effects with the library. 



As a language, one may !nd OSL lacking in certain niceties common to modern programming languages.  
For example, the lack of a switch statement came up early in the development of the project as a construct 
that we missed from C.  Many of these omissions are planned to be implemented, but not prioritized in 
light of the fact that they amount to no signi!cant post-optimization bene!t.  Switch would amount to 
nothing more than a series of if-else statements.  Certain aspects of the OSL paradigm do prevent us from 
creating a truly energy conserving shading system.  Some layered shading models[3] are difficult to express 
as closures because they would require large chains of nested closures which may be unwieldy for the 
renderer to traverse efficiently.  

e Imageworks OSL shader library currently consists of about 136 shading nodes used to create 43 
networks.  ese networks vary in complexity with the largest ones, such as that containing our general 
surface material employing 294 nodes.  e majority of these nodes are generic texture nodes, and each of 
these can be procedurally extended in look development or lighting contexts to allow compositing of 
textures in the shading network.  Each shading network describes a single material, and then these can also 
be stacked as material layers to accomplish more complex looks.  All of the shading networks are assembled 
in Katana, and published as Katana standards with a single hand built user interface exposing only the 
necessary parameters for user interaction.  Every show in the facility uses the same core shader library and 
networks. It is worth noting that the Foundry's shipping version of Katana supports all of the same OSL 
functionality that we enjoy at Imageworks.  OSL interfaces can be viewed, and networks graphically 
constructed within the application. 

In addition to the SPI version of the Arnold renderer, there are a handful of projects, both CPU and GPU 
that are implementing the language speci!cation, if not the library directly.  e hope is that as more users 
come to work with advanced path tracing algorithms in production, a language that can commonly speak 
to these methods will prove essential to their effective use.
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