
Everything You Always Wanted to Know About
mia_material* (* But Were Afraid to Ask)

by H̊akan “Zap” Andersson

Figure 1: Catch the Dream

Abstract

As the original author of the popular mental ray shader mia_material1, I will herein discuss its
background, development history, features, and even its failures.

Today’s topic: mia_material

mia_material is probably one of the most widespread physically plausible shaders in existence. As of
today, is is integrated (in some form or another) into a large percentage of Autodesk products—including
10+ million AutoCAD installations—and it is the basis of the standardized Autodesk materials. It has
been used in everything from spoon commercials and game cinematics to high-end feature films, and
it has inspired many emulations, simulations and deconstructions from partners and competitors alike.

1Also known as the Arch & Design Material in certain product integrations.

1

Background: what is this thing anyway, and why was it made?

Traditionally, computer graphics software has been littered with very ad hoc shading models. In
particular, DCC (Digital Content Creation) tools have had a tendency to throw “everything and the
kitchen sink” at its poor users, leaving them very frustrated as they attempted to figure out how to
glue things together and get a visually correct result.

It didn’t help that a lot of this software had no concept of energy conservation, so creating a shader
that emitted 500% of the incoming energy was all too easy to do—there were simply no safeguards.
This, compounded by the interesting psycho-optical limitations of how we see things2, made it surpris-
ingly difficult to fine tune the rendering “by eye”. To make matters worse, many DCC applications
had color management (and hence gamma correction) turned off by default, which meant that the
poor user had to try to light in a non-linear color space. Taken together, you can appreciate what an
utter mess the business was in!

The Time, the Place, the People

The development of a solution to this problem started in 2005, as a proposal by mental images3 for
a new, easy-to-use physically plausible shading in mental ray, primarily targeting Autodesk ’s 3ds Max
DCC platform. The design was principly done by mental images but in strong cooperation with
Autodesk, and was iterated over many months. Development was done on the mental images side4

but weekly design iterations were done with the rendering development and product design leads at
Autodesk5.

So, who is “Mia”?

The actual working name of the shader was “The X material”6, but as it was later folded into the
larger “architectural” shading library, mental images shader naming convention dictated that it got
stuck with the name mia_material, where “mi” stands for mental images and “a” for architectural.

Design Goals: what were we trying to achieve?

From a high-level perspective, the idea was simply to achieve good-looking and physically plausible
shading with minimal effort. The user, starting with the default settings, should be able to get
a pretty picture right “out of the box”7. For this reason, the aforementioned architectural shader
library contained other shaders for things such as physical sun- and sky-lighting, exposure control,
tone mapping, etc., that we will not delve deeper into here.

Some key design decisions were:

• Conceptually layering : The user should be able to think about the shader as if layering things
together, such as a clear coat on top of a diffuse layer on top of some kind of transparency.

• Energy conservation: No more “let’s have 100% diffuse with 50% glossy reflection and 80%
transparency”.

2For more on this topic, see the mry201 course, class #2, available at fxphd.com.
3mental images GmbH in Berlin is now known as the NVIDIA ARC (Advanced Rendering Center).
4Me (Zap Andersson), overseen by Matthias Senz.
5Pierre-Felix Breton and Daniel Levesque.
6To this day, the original name is reflected in some of the names in the source code.
7Assuming that they also used a physically plausible lighting scenario, a proper linear color space, etc.

2

fxphd.com

• Reflections and specular highlights are linked: Most shaders of this era treated tradi-
tional Phong-style specular highlights and glossy reflections as completely disparate sets of knobs,
wholly unrelated unless the user linked them manually. Reality doesn’t work that way!

• Fresnel everywhere: Most reflectivity effects in reality follow an angle dependent curve. How-
ever, our human visual subsystem is specifically designed to tune this effect out. This makes it
very difficult to intuit that reflections should depend on a Fresnel curve.

• Easy parameters: Visually understandable parameters in a range that can be texture mapped
(i.e., glossiness in a 0-1 range rather than roughness going from 0 to infinity, or exponents going
into the thousands.)

• It has to look good: Above all, images should look good. So visual beauty was actually valued
higher than strict academic accuracy. For example, most of the shading models existing at the
time were rejected simply based on a dislike of their visual appearance.

• Special options: Some specific options were deemed important, such as:

– Thin versus thick material: treat the boundary either as an entry/exit surface to a
volume, or an infinitely thin “soap bubble”-like shell.

– Cutouts: removing parts of a surface with a texture map. For example, to turn a rectangle
into a leaf.

– Metal mode: metal reflects its color, dielectrics do not. This has to be an easy “switch”.

• Easy to use: Things that were difficult to set up or do in mental ray had to be automatic.

– Photon and shadow shaders: These work differently from surface shaders, and nor-
mally need special care to set up properly. In mia_material, they are simply built in and
automatic.

• (Reasonably) accurate: the user should be able to input real-world values should get reason-
ably real-world results.

• Performance: finally, it had to be fast. At the time, most shaders that did something as “exotic”
as glossy reflections caused ray counts to explode exponentially and quite literally ground your
rendering to a halt.

3

The Shader: its features and behavior

The full documentation of the shader and all of its parameters is beyond the scope of this document,
but a good reference can be found here: http://download.autodesk.com/us/maya/2009help/mr/

shaders/architectural/arch_mtl.html

Material Layers

The material consists of four basic layers, and these are conceptually combined “on top” of each other
as follows:

• Reflections / Coating

• Diffuse

• Refractions (referred to as transparency from this point on)

• Translucency

Figure 2: The various layers

This ordering becomes relevant for the energy conservation algorithm. For instance, since the reflection
layer is conceptually on top, it “steals” energy8 from anything below it.

8This is covered in more detail in the Energy Conservation section.

4

http://download.autodesk.com/us/maya/2009help/mr/shaders/architectural/arch_mtl.html
http://download.autodesk.com/us/maya/2009help/mr/shaders/architectural/arch_mtl.html

Angle-Dependent Reflectivity

Furthermore, the reflection layer has an always-on angle-dependent component, where reflectivity
increases at increasingly grazing angles of incidence.

Figure 3: Angle-dependent reflectivity.

This feature can be switched between a strict Fresnel function (driven by the index of refraction) and a
“hand tuned” curve, where one gives as inputs the reflectivity at normal incidence (R0), the reflectivity
at grazing incidence (R90), and a curve exponent (E). Here is an example of the user interface in 3ds
max:

Figure 4: 3ds max UI example.

The actual reflectivity is modulated like this pseudocode snippet:

float dot_nv = dot(normal, eye);

float expfac = pow(1.0 - dot_nv, E);

float refl = R0 * (1.0 - expfac) + R90 * expfac;

5

Energy Conservation

Energy conservation follows by a fairly simple set of rules:

• Reflection takes energy from everything below it

• Transparency takes energy from diffuse

• Translucency is considered to be a “kind of” transparency, and therefore shares remaining energy
with it9

In practice, when layer A “takes energy from” layer B, it means that layer B’s contribution is multiplied
by 1 minus the contribution of layer A. To avoid color shifting, this is done equally per channel, so the
contribution is based on the luminance-weighted R, G, B components. Therefore, a red reflection does
not just remove “red energy” (which would, to the user’s surprise, tint underlying layers cyan). Instead,
it subtracts the same amount from all channels. The value used is the amount of red multiplied by
the luminance weight of the red channel (for the current color space). This is technically wrong but
since most of the energy loss comes from the reflectivity layer—which is generally white—we rarely see
problems. In pseudocode form, this amounts to:

float3 reflect = apply_view_dependent_curve(<reflectivity>)

float3 diffuse = <diffuse>;

float3 refract = <transparency>;

float3 transl = <translucency>;

float orig_transl = luminance(transl);

// Energy conservation math

diffuse *= (1 - luminance(refract)); // Reduce by transparency

transp *= (1 - luminance(reflect)); // Reduce by reflectivity

diffuse *= (1 - luminance(reflect)); // Reduce by reflectivity

transl *= refract; // Scale by transparency

refract *= (1 - orig_transl); // Compensate by reducing by orig. translucency

At this point the variables diffuse, reflect, refract and transl contain the absolute weight of each of
the components. Slightly more complex rules are used if the metal mode is enabled; reflectivity color
is multiplied by the diffuse color, but the energy conservation operates as if reflectivity had retained
its original color.

9This is admittedly a bit inconsistent and was caused by translucency being added later.

6

Shading Model

As mentioned earlier, visual quality was the main decider of the shading model of the various layers. A
lot of work went into making these look nice, but also execute efficiently. The efficiency work is beyond
the scope of this document10, and probably irrelevant to most modern rendering, because it was done
in ways particular to mental ray and particular to the fact that it had to be done in the shaders11.

Transparency

The transparency layer just used standard mental ray glossy transparency functions12 with no special
sauce at all.

In theory there is probably a similar “problem” with transparency as we will be discussing in a
moment with reflections, but transparency is hard for our brains to wrap themselves around. Even
early research at Pixar shows that our eyes accept almost anything that is roughly the right color and
distorted as “refraction”, so no particular deep thinking went into this part of the shading at all13.

Translucency

The translucency layer is even more simple. It is really intended to be a cheap fake for things like
translucent leaves and similar, without having to do full sub-surface scattering and other complex
shading effects. It is implemented simply as computing a standard Lambertian diffuse on the opposite
side of the surface.

Diffuse

The diffuse model is Oren-Nayar, but with a twist. The visual problem we saw with a standard
Lambertian is a harsh look of the terminator. This becomes especially evident when rendering in a
proper linear color space14. The reason for this is simply the large discontinuity in the shading.

10Careful importance-driven ray-tree management and whatnot.
11Being located outside the Berlin office, I never actually had access to the closely guarded mental ray source code. It

was locked in a vault not unlike the one seen in “Terminator 2”.
12mi transmission dir anisglossy x() to be precice.
13Actually I’ve seen refraction in real life that doesn’t look realistic at all !
14Sadly, we live in a world where a large amount of people think a Lambertian surface actually looks like what you see

when displaying it with no gamma correction straight onto an sRGB display. I invite such people to go into a dark closet
with a flashlight and a ping-pong ball, and if they don’t change their views, well, at least we have them safely locked
away in the closet.

7

Our eyes are edge-detectors and do this by detecting the second derivative (the change in the rate
of change) of luminance. Since a Lambertian is just an abruptly cut off cosine, we perceive this as an
edge. The problem is especially evident in point-lit scenes15 and when the terminator is seen against
a slightly different color:

Figure 5: A mia_material diffuse (left) compared to a standard Lambert (right) under two-colored
light.

The image above shows the (admittely very subtle) difference. On the right, the terminator regions
appear harsher and reads more like lines to the eye. On the left, we see the mia_material version
which smooths this out some.

The implementation is simply applying a smoothstep() function to the very lowest 25% region of
the cosine, to smooth out the discontinuity some. It isn’t entirely successful in an artificial scene such
as the above, but does cover up the problem in most real-world scenes.

Figure 6: Cosine with a smoothstep (left) compared to a standard cosine (right).

15Area-lighting alleviates this problem quite a bit, but it is still there.

8

Reflections

With the Reflection layer, we found that many of the available models were grounded heavily in
theory—such as a microfacet model, or similar—but that many of them failed the basic test of looking
good. In essence, the “look” of glossy reflections and specular highlights of many available shading
models simply did not satisfy us visually.

Two visual problems were especially evident: bad highlights, and poor “stretchiness” of reflections:

Bad Highlights

For most shading models, specular highlights looked too much like a Gaussian—i.e., a “fuzzy blob”—
and didn’t appear visually “glowy” enough. At the time (2005), very little available research existed
to explain the difference; we simply relied on experience of what looked realistic.

Figure 7: This image shows an mia_material highlight (left) compared to a traditional Blinn-style
highlight (right).

Notice how the mia_material highlight has a softer “spread”, whereas the Blinn model fades out much
more rapidly. No amount of tweaking of the Blinn shader’s exponent will match the appearance of
mia_material.

People have historically resorted to cheap tricks to combat this, such as combining multiple specular
functions with different exponents; this is in fact the same trick utilized by mia_material. The
highlight is a layering of multiple Ward highlights16, where the base Ward exponent is computed using
this formula:

base_exponent = pow(2.0, glossiness * 8.0);

Then, three highlights are created using base_exponent, base_exponent/2.0, and base_exponent/4.0

and blended with weights 1/6, 1/3 and 1/2, respectively.

16Using mental ray API function mi ward anisglossy()

9

Reflection “Stretchiness”

A second issue with many existing shading models is how they fail to recreate the “stretchiness” of
reflections to the extent that reality seems to do. As an example of this, let us consider a sunset over a
lake. Why does the Sun’s reflection turn into this vertical streak, rather than just a fuzzy highlight?

Figure 8: A stretchy highlight.

The answer to this question is simple: the normal varies across the lake surface effectively randomly
with the many tiny waves on the surface. But what happens to the reflection direction as the normal
varies on a horizontal surface such as this water?

• If the normal is varying away from or towards the viewer, the reflection direction varies massively
up or down the sky.

• If the normal is varying side to side, it hardly affects the reflection direction at all.

10

Figure 9: How reflection rays change as the normal vector changes.

This makes the reflection “lobe” extremely stretched out in the visually perpendicular direction to the
surface’s median normal. This effect seems to be under-represented in many available shading models
- even the microfacet ones which should, in theory, represent this well.

The mia_material Stretchiness Solution

Most available helper functions in the mental ray shader API for generating rays for glossy reflections
work by varying the reflection direction randomly. But as we discovered above, this does not yield
visually interesting reflections at all; a uniform cone of glossy reflection rays is exactly what one does
not want. mia_material solves this with some creative coding17, “abusing” the mental ray API by
using the functions intended for generating Quasi-Monte Carlo (QMC) stratified bunches of glossy
reflection rays18 to instead generate bunches of modified normals, and then recomputing the reflection
ray for each new normal.

Figure 10: Jittering reflection direction vs. jittering normals.

When computing a reflection direction based on a shading normal that is very different to the

17“I’m not a mathematician, I’m a magician” - Me
18mi reflection dir anisglossy x()

11

geometry normal, there is always a risk of the reflection direction ending up below the plane, causing
a self-intersection with the surface if one tries to trace that ray. Most renderers reject such rays, or
treat them as black, which is often a cause of dark edges in glossy reflection models. In contrast,
mia_material simply flips such rays to be above the plane instead, which seems to work well in
practice.

Figure 11: Solving reflection rays that go below the plane.

A visual comparison of the two methods:

Figure 12: In this image, we see mia_material reflections on the left, and standard mental ray Ward
reflections on the right.

The reflection of the sphere is properly stretched out on the left, but is just a fuzzy, vaguely Gaussian
blob on the right. The reflection of the teapot on the right just looks strange.

However, all of the above caused one of the biggest problems with the shader, as I will discuss in
the following section.

12

Failure is Always an Option

Life is not always optimal, and there are a couple of known issues with mia_material.

Highlights versus Reflections

A major flaw in mia_material is the simple fact that reflections and specular highlights do not match!
They may be extremely beautiful individually, but they are supposed to express the same math in two
different ways. Alas, they do not19:

Figure 13: Specular highlight (left) vs. glossy reflection (right) at glossiness=0.54.

There are several reasons for this discrepancy:

• Highlights use the a sum of three Ward highlights with three different levels of glossiness

• Reflections only use a single function with a single glossiness, not three

• The unorthodox method to compute the reflection ray directions ends up being a different dis-
tribution than the highlights20

This has to be the issue to look out for if one is trying to match mia_material in some other
renderer. Without cloning this behavior, it will be practically impossible to get an identical “look”.

Conservation Math is “Wrong”

The Energy conservation math uses a slightly bizarre algorithm when a layer takes energy from another
layer. As mentioned previously, it bases the reduction in energy on the luminance-weighted color value.

Without doing this, if one has a 100% red reflection layer there would be zero energy left for diffuse
reflections, since 100% has already been taken. Or alternatively, it would only reduce the energy in
the red channel, causing a cyan tint of the underlying layers. We felt either of those results would feel
confusing to the user. Instead, mia_material considers the 100% red to be only 21%21 of the total
energy, and the remaining 79% can be used for diffuse.

19As I said, “I’m not a Mathematician, I’m a Magician”
20If it is any consolation, had the standard mental ray API function been used to create the reflections, they still would

not have matched.
21Assuming sRGB color primaries, where the weight of the red channel is 21%.

13

Fixed Layers

Many real world materials need more than the four predefined layers of mia_material to be accurately
portrayed. For example, car paint would need colored glossy reflection and white specular clear-coat
reflections. This is impossible to achieve with a single mia_material instance, and whilst it is possible
to blend multiple materials using a color mixing shader, this is highly inefficient22. It will also not
work with shadow and photon shaders, which work inherently differently in mental ray and so can’t
just be mixed in that way.

Missing Effects

Finally, mia_material doesn’t support subsurface scattering and a few other shading effects that may
be desirable. So as a “do everything” material, it fails to actually do everything.

Tiny Bumps are Hard

Another more general problem that isn’t specific to mia_material is the problem of small (subpixel)
bumps getting prematurely filtered.

In reality, all glossiness effects are actually the result of some form of sub-pixel structure. But
when a traditional bump or normal map gets filter prior to shading, this effect goes away with the
filtering. It may look fine in a close up where every little bump is visible, but seen at a distance where
for example every screen pixel covers 100 normal map pixels (causing the normal map to get heavily
filtered) the effect breaks down and the material appears too shiny.

The mia_material lacks any solution to this problem. A few experiments were made to solve it,
but none were ultimately successful. For example: instead of filtering 100 normals down to a single
normal and shading that, we attempted to actually sample the light once, and re-using this light sample
shade each of the 100 normals. This turned out to be way too slow to be usable, and was never actually
added.

Figure 14: Filtering a normal-map down to a single normal (left) vs. shading all normals and filtering
the result (right)

22Each material would run its own light loop and trace its own set of rays, quickly exploding render times.

14

Going Forward

The experience of creating mia_material and seeing it spread throughout the industry has been an
interesting and rewarding experience. But what can we learn from all this?

Highlight and Reflection Appearance is Important

Our argument that the Gaussian or cosine-raised-to-a-power look of classic specular models was wrong,
and that real-world highlights seem to have a falloff that appears much more exponential in nature was
purely empirical. But in 2012 at least two papers were released that seem to vindicate our observations:

• Brent Burley, “Physically-Based Shading at Disney” from SIGGRAPH 201223

• Joakim Löw, Joel Kronander, Anders Ynnerman and Jonas Unger, “BRDF Models for Accurate
and Efficient Rendering of Glossy Surfaces” from Linköping University24

Figure 15: An important graph from the Löw et al. paper.

In Figure 15 (a), the red line is measured data, the blue line is the model proposed in the paper
and the green line is Cook-Torrance. The difference between image (c) (their model) and image (d)
(Cook-Torrance) shows exactly the visual problem we witnessed when studying many available glossy
models empirically. Clearly, more research needs to go into this area.

23http://blog.selfshadow.com/publications/s2012-shading-course/
24http://vcl.itn.liu.se/publications/2012/LKYU12/

15

http://blog.selfshadow.com/publications/s2012-shading-course/
http://vcl.itn.liu.se/publications/2012/LKYU12/

Reflection Stretchiness and Tiny Bumps

A very promising technique that solves both the problems of stretchy reflections and also handles the
effect of tiny bumps seen at a distance can be found in this paper:

• Marc Olano and Dan Baker, “Lean Mapping” from Firaxis Games25.

Flexibility is Important

The design of mia_material as a monolithic predefined set of layers was intentional, for performance
as well as ease-of-use reasons, yet it is limiting for the end user. Something more flexible is needed, and
in fact there is currently a clear industry move away from shaders as pieces of code, towards materials
as a mixture of atomic BRDFs.

Fortunately, a successor to mia_material is currently being developed by NVIDIA ARC 26 based
on a flexible and efficient layering model. These shaders are known as the MILA27 shaders, and are
based on code I wrote while still an NVIDIA ARC employee, but the shaders have been developed
further since then. Curious mental ray users can find a beta download of these shaders at the NVIDIA
ARC forum mentioned below.

Figure 16: Dirty glossy skin dipped in strawberry jam, rendered in the MILA shaders.

25http://www.csee.umbc.edu/~olano/papers/lean/
26The company formerly known as mental images GmbH.
27This stands for mental images layering.

16

http://www.csee.umbc.edu/~olano/papers/lean/

Want to Know More?

More information on the mia material and related shaders can be found in the documentation of the Ar-
chitectural shader library. Another source of information is my blog at http://www.mentalraytips.
com, as well as the user forums at NVIDIA Advanced Rendering Center, found at http://forum.

nvidia-arc.com/.
Adventurous people can also follow @MasterZap on Twitter but be forewarned, it is mostly

Instagram pictures of Sushi....

17

http://www.mentalraytips.com
http://www.mentalraytips.com
http://forum.nvidia-arc.com/
http://forum.nvidia-arc.com/

