Mathematica Notebook for the
SIGGRAPH 2013 talk “Background:
Physics and Math of Shading””’

This notebook contains some computations referenced in the course notes.

OFff[NIntegrate: :inumr]
SetOptions[Plot, PlotRange -» {0, All}];

(xBased on the default Matlab color scheme, with some tweaksx)
pCol = RGBColor [0, 0, 171; (xbluex)

bCol = RGBColor[0.85, 0.0, -85]; (*magentax)

tsCol = RGBColor[0, 0.75, 0.75]; (*Cyanx)

trCol = RGBColor([1, 0, 0]; (xredx)

abcCol = RGBColor [0, 0.75, 0]; (xgreenx)

sgdCol = RGBColor[1, 0.75, 0]; (xOrangex)

gtrCol = RGBColor[0.6, 0.3, 0.0]; (xbrownx)

Phong NDF

This is the unnormalized Phong distribution function:
niop= unnormal izedphong = Cos[6]%*;
Compute the normalization factor (relative to projected area) for the Phong distribution function:

1= phongnormf = Integrate [unnormalizedphong Sin[e] Cos[e],
{¢, -7, 7}, {6, 0, 7/ 2}, Assumptions -» {ap > 0}]

27t
Out[11]=
2+aop
unnormal izedphong
npzp= phong =
phongnormf
(2 +ap) Cos (o]

Out[12]=
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Here are the distribution curves for some logarithmically spaced cosine powers (as well as 0, which
corresponds to the uniform distribution):
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npa= GraphicsRow[ {Plot[phong /. ap»# & /@ {0, 1, 2, 4, 8}, {6, 0, n/ 2}, PlotStyle - pCol],
Plot[phong /. ap » # & /@ {16, 32, 64, 128}, {6, 0, n/ 2}, PlotStyle - pCol],
Plot[phong /. ap » # & /@ {256, 512, 1024, 2048},
{6, 0, n/2}, PlotStyle -» pCol1}, ImageSize - Full]
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And an interactive graph:
npa= Manipulate[
Plot[phong /. ap -» (80002 -1), {e, 0, n/ 2}, PlotStyle -» pCol], {{a, 0.25}, 0, 1}]
—"
Out[14]=
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Beckmann NDF

This is the unnormalized Beckmann distribution function:

1 ( 1-Cos[e]? )
e

Cos[e]2ab? | =
»

misp= unnormal izedbeckmann = ——
ab? Cos[e]?

Compute the normalization factor (relative to projected area) for the Beckmann distribution function:

ner= beckmannnormf = Integrate [unnormal izedbeckmann Sin[e] Cos[e],
{¢p, -7, 7}, {6, 0, 7w/ 2}, Assumptions -» {ab > 0}]

Out[16]= JT
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We see here that the correct normalization factor for the Beckmann distribution, given normalization
over projected area, is i

unnormal izedbeckmann

7= beckmann =
beckmannnorm¥

2 2
- (1-Cos [0]%) Sec (o]

e ob? Sec[o]*

7t ob?

out[17]=

The Beckmann a,, parameter is equal to the RMS (root mean square) microfacet slope. Therefore its
valid range is from 0 (non-inclusive — O corresponds to a perfect mirror or Dirac delta and causes divide
by 0 errors in the Beckmann formulation) and up to arbitrarily high values. There is no special signifi-
cance to a value of 1 — this just means that the RMS slope is 1/1 or 45°. We will look at the shape of the
Beckmann NDF for moderately rough surfaces (m from 0.4 to 1):

nie= Plot[beckmann /. ab - # & /@ Range[0.4, 1.0, 0.1], {e, 0, n/ 2}, PlotStyle » bCol]
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We see here that at ayvalues above 0.75, a local minimum starts appearing at 0°. This is significantly
different than a Phong or Gaussian lobe, where the "roughest" possible surface is a uniform distribution.
The Beckmann distribution is qualitatively different in that its parameter is not related to the variance of
the angle but the mean of the slope. Thus a "very rough" surface in the Beckmann context is not a
uniform or almost-uniform distribution, but a distribution clustered around high slopes. Let us look at
even larger values of m:
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npo= Plot[beckmann /. ab » # & /@ Range[l1, 7], {6, 0, w/ 2}, PlotStyle - bCol]

Out[19]= 4
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This behavior is unfortunate for environment map prefiltering, since the frequency content of the NDF
decreases to a certain roughness and then starts increasing with m. Beckmann is supposed to be a
good match to real-world measurements, but | am not sure over what range of parameters these compar
isons were carried out, and whether values this high (or even higher than 0.75, where the local minima
starts appearing) are observed in practice.

Let us compare Beckmann and Phong, using an equivalence between the parameters of the two NDFs
published in "Microfacet Models for Refraction through Rough Surfaces" (EGSR 2007) — note that the
equivalence breaks down for ap, > 1:

2
o= ab2ap[ab_] 1= — -2
ab?

n1= GraphicsRow[ {Plot[{beckmann /. ab -» # & /@ Range[0.2, 0.5, 0.1],
phong /. ap » ab2ap[#] & /@Range[0.2, 0.5, 0.1]}, {6, 0, xw/2},
PlotStyle -» {bCol, pCol}], Plot[{beckmann /. ab - # & /@ Range[0.6, 1.0, 0.1],
phong /. ap » ab2ap[#] & /@Range[0.6, 1.0, 0.1]},
{e, 0, n/2}, PlotStyle » {bCol, pCol}]1}, ImageSize -» Full]
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For rough surfaces (left plot), the equivalence holds about as well as can be expected, but the shape of
the NDFs starts to differ significantly as m increases. For relatively smooth surfaces (right plot) the two
NDFs match surprisingly well. This is to Phong'’s credit, who devised his NDF (although not as such)
purely from observation. As the value of @}, decreases, the match improves.
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Interactive graph for “normal” (not super-rough) values, comparing with Phong:

nz;= Manipulate[Plot[ {beckmann /. ab -» a, phong /. ap -» ab2ap[a]l},
{6, 0, 7/ 2}, PlotStyle -» {bCol, pCol}], {{a, 0.25}, 0.01, 1.0}]

g d

Out[22]=
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Interactive graph for Beckmann by itself for super-rough values:

ne3= Manipulate[Plot[beckmann /. ab » a, {6, 0, 7w/ 2}, PlotStyle -» bCol], {a, 1.0, 10.0}]

,atD

Out[23]=
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Torrance-Sparrow NDF
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This NDF is a Gaussian on the angle between the microfacet normal and the macroscopic surface
normal. We will need to normalize it since Torrance and Sparrow did not supply a normalization factor:

) 2
nar= unnormal izedtorrancesparrow = e'(E) ;
We'll try for an analytical normalization factor:
nesi= normts = Integrate[unnormalizedtorrancesparrow Sin[e] Cos[e],
{¢p, -7, 7}, {6, 0, 7w/ 2}, Assumptions -» {ats > 0}]

s Tt

+iats| +2Erfi [ats]

1
out[25]= Tets® 32415 [—]‘LErf{ —JlO(tS]+JiErf[
4

2ats 2ats

Wow, that’s ugly! It also appears to be complex-valued, which is odd since the function being integrated
was real-valued. Let’s see if it is really complex-valued:

nee= Plot[Im[normts], {ats, 0.05, 1}, {PlotRange » {-0.01, 0.01}, PlotStyle -» Thick}]

0.010 -
0.005 -
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The imaginary part is O — looks like the normalization factor actually is real-valued and Mathematica is
just being weird. If we were actually going to use this, we would fit a cheap function to the curve instead
of using the analytical expression. But since we are just comparing it to other NDFs, no need to do that.
Let's compare it to Blinn-Phong, using the Beckmann parameter conversion (according to the Cook-
Torrance paper, the Beckmann and Torrance-Sparrow parameterizations are the same — both are equal
to RMS slope):

unnormal izedtorrancesparrow

ne7= torrancesparrow =
Re[normts]

52

4@ut52]/ (JTB/Z Re{e"“tSz ats (—Ji Er f [Zﬂt —]lO(tS] +1 Erf [
at's

Out[27]=
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nes;= Plot[{torrancesparrow /. ats » # & /@Range[0.2, 0.5, 0.1],
phong /. ap -» ab2ap[#] & /@ Range[0.2, 0.5, 0.1]},
{6, 0, n/2}, PlotStyle » {tsCol, pCol}]

B8R\

out[28]=
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The curves do look similar, but it appears that the equivalence between the parameterizations of the
two distributions is a bit different than the one implied in the Cook-Torrance paper. We could work out
the exact equivalence, but if the Torrance-Sparrow NDF turns out to have similar behavior to Phong
over the whole range then it would be wasted effort since there would be no reason to use the (much
more expensive) Torrance-Sparrow NDF. Let’s adjust parameter values manually to make the peaks
coincide:

npo= Plot[{torrancesparrow /. ats » # & /@ {0.2027, 0.3097, 0.425, 0.552},
phong /. ap -» ab2ap[#] & /@ Range[0.2, 0.5, 0.1]},
{6, 0, n/2}, PlotStyle » {{tsCol, Thick}, pCol}]

out[29]=

05 10 15

The curves appear to be extremely close. Let's look at a rougher part of the domain:
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nzop= Plot[{torrancesparrow /. ats - # & /@ {0.7035, 0.899, 1.195, 1.81},
torrancesparrow /. ats » 100.0, phong /. ap -» ab2ap [#] & /@Range[0.6, 1.0, 0.1]},
{6, 0, n/2}, PlotStyle -» {tsCol, {tsCol, Thick}, pCol}]

06
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All'in all, the behavior appears to be very similar to Phong. The curves for rough surfaces are a bit
higher at glancing angles, but the overall trend is towards a uniform distribution, like Phong (and unlike
Beckmann). Given this similarity in behavior and the much higher computational complexity of the
Torrance-Sparrow NDF (even higher than it appears as first, since it uses the angle directly rather than
the cosine), there does not appear to be a reason to use it.

Trowbridge-Reitz NDF

The original paper by Trowbridge and Reitz, the 1977 Blinn paper, and the 2007 paper by Walter et al.
(where they refer to it as “the GGX distribution”) all have slightly different forms of this NDF. They are all
equivalent other than constant factors; we will independently derive the normalization factor here:

1
nz1= unnormal izedtrowbridgereitz = ;

(Cos[e]? (atr?-1) + 1)2

nzz= trowbridgereitznormf = Integrate [unnormalizedtrowbridgereitz Sin[e] Cos[e],
{¢p, -7, 7}, {6, 0, 7/2}, Assumptions -» {atr > 0}]

A

Out[32]=
at r?

unnormalizedtrowbridgereitz

niss= trowbridgereitz = - -
trowbridgereitznormf

atr?

Out[33]=
7T (l + <—1 +O(tr2) Cos [9]2)2

We'll look at the distribution curves for moderate parameter values (on the left) as well as for high

parameter values (on the right):
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nza= GraphicsRow[ {Plot[trowbridgereitz /. atr - # & /@Range[0.4, 1.0, 0.1], {®, 0, w/ 2},
PlotStyle - trCol], Plot[trowbridgereitz /. atr - # & /@Range[l, 7],
{6, 0, n/2}, PlotStyle -» trCol]}, ImageSize -» Full]

15+
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out[34]=
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On the left, we see that the parameterization behaves approximately like Beckmann’s: higher is
rougher. Unlike Beckmann, a value of 1.0 gives a uniform distribution (flat line). On the right, we see
that the Trowbridge-Reitz distribution also supports “super-rough” distributions, like Beckmann.

Let's compare Trowbridge-Reitz to Phong for the rough-to-moderate range (on the left) and for
smoother surfaces (on the right). We use the Beckmann parameter equivalence, since behavior with
respect to the parameterization appears similar:

nizs= GraphicsRow [ {Plot[{trowbridgereitz /. atr - # & /@Range[0.4, 0.9, 0.1],
trowbridgereitz /. atr » 1.0, phong /. ap -» ab2ap[#] & /@ Range[0.4, 1.0, 0.1]},
{6, 0, n/2}, PlotStyle -» {trCol, {trCol, Thick}, pCol}],
Plot[{trowbridgereitz /. atr -» # & /@Range[0.1, 0.4, 0.1],
phong /. ap » ab2ap[#] & /@Range[0.1, 0.4, 0.1]},
{e, 0, n/2}, PlotStyle » {trCol, pCol}]1}, ImageSize -» Full]

Out[35]=
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The distributions are somewhat similar, but the Trowbridge-Reitz distribution seems to have narrower
peaks and longer “tails” across the entire range (except for the uniform distribution which is identical for
both).

Finally, here’s an interactive plot comparing it to Phong:
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In[36]:=

Out[36]=

Manipulate[Plot[{trowbridgereitz /. atr » a, phong /. ap » ab2ap[a]l},
{6, 0, 7/ 2}, PlotStyle -» {trCol, pCol}], {{a, 0.25}, 0.01, 1.0}]

15

ABC NDF

In[37]:=

In[38]:=

Out[38]=

In[39]:=

Out[39]

In[40]:=

Out[40]=

1

unnormalizedabc =

(1+aabc (1-Cos[e]))¥ac |

abcnormf = Integrate [unnormalizedabc Sin[e] Cos[e],
{¢, -7, 7}, {6, 0, 7w/ 2}, Assumptions -» {aabc > 0, yabc > 0}]
(27 (1 +aabc) @ ((1+oabc)?+ (1+aabc)*@ (-1 +aabc (-2 +vabe)))) /
(cabc? (-2 +yabc) (-1 +vabc))

This function has singularities at yabc = 1.0 and yabc = 2.0. However, we can generate specific normal-
ization terms for these values. These are the same as the limits of the more general function in the
neighborhood of these values, indicating that the singularities are removable:

abcnormfgl = Integrate[ (unnormalizedabc /. yabc » 1) Sin[e] Cos[e],
{¢p, -7, 7}, {6, 0, 7w/2}, Assumptions » {aabc > 0}]

1

227r (-aabc + (1 +aabc) Log[1l + cabc])
oaabc

Limit[abcnormf, yabc -» 1]
1

227r (-aabc + (1 +aabc) Log[1l +cabc])
aabc
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nz11= abcnormfg2 = Integrate[ (unnormalizedabc /. yabc -» 2) Sin[e] Cos[e],
{¢, -7, 7}, {6, 0, n/2}, Assumptions » {aabc > 0}]

2 7 (aabc - Log [l + cabc])

Out[41]

aabc?

n421= Limit[abcnormf, yabc -» 2]

2 7 (aabc - Log [l + cabc])

Out[42]=
aabc?

We'll create a piecewise form of the function covering the singularity cases, so that we can easily plot
the normalized NDF over a range of parameter values:

naz= abenormfpw = Piecewise[ { {abcnormfgl, yabc == 1}, {abcnormfg2, yabc == 2}}, abcnormf]

2 5 (-oabc+ (1+cabc) Log[1l+aabc])

yabc =1

aabc?
2 1 (o@abc-Log[l+aabc])

abc =2
out[43]= oabc? Y

(27 (1+aabc) @ ((1+aabc)?+ (1+oabc)¥@ (-1 +oabc (-2 +vabc))))/ True
(oabc? (-2 +yabc) (-1 +vyabc))

unnormal izedabc

n41= abc =
abcnormfpw

oupsa= (1 +cabe (1 -Cos[6])) ﬁabc/

1

aachZﬂ (-aabc + (1 +cabc) Log[1l +ocabc]) yabc =1
2 5 (c@abc-Log[l+aabc]) -
aabc? yabc =2
(27 (1+0cabc) @ ((1+cabc)?+ (1+aabc)¥@ (-1 +ocabc (-2+vyabc)))) / True
(cabc? (-2 +yabc) (-1 +vyabc))

This normalization term has an extremely complicated form - definitely too expensive for games; even
for film use, it would be convenient to simplify it. Since when plotted it yields smooth curves, it should be
possible to create a much simpler approximation for production use. Let us look at the behavior of the
normalized ABC NDF as its parameters are varied. Since the parameter space is two-dimensional, we'll
need more plots than in the previous sections:
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nes= plotlabe[x_] := Labeled[Plot[abc /. {aabc » #, yabc -» x} & /@ {1.0, 10.0, 100.0, 1000.0},

{6, 0, w/ 2}, PlotStyle -» abcCol], "yanc = " <>ToString[x]]

plot2abc[x_] := Labeled[Plot[abc /. {aabc -» X, yabc » #} & /@ {0.1, 0.5, 1.0, 1.5},

{e, 0, w/2}, PlotStyle -» abcCol], "aznc = " <>ToString[x]]

GraphicsGrid[{plotlabc /e {0.1, 0.5, 1.0, 1.5},
plot2abc /e {1.0, 10.0, 100.0, 1000.0}}, ImageSize - Full, AspectRatio - 0.25]
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And here’s an interactive plot:

nzg= Manipulate[Plot[abc /. {aabc » a, yabc » b}, {6, 0, 7/ 2}, PlotStyle » abcCol],

{a, 1.0, 1000.0}, {b, 0.25, 2.5}]
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Experimenting with various values shows us that the value of yabc appears to control the shape, while

the value of @abc controls the roughness. (They are not cleanly separated, so when varying yabc you

need to change aabc to keep the same roughness.) Let’s see if we can fit Trowbridge-Reitz using ABC:
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naor= Manipulate[Plot[ {trowbridgereitz /. atr -» ktr, abc /. {aabc - kabcl, yabc -» kabc2}},
{6, 0, 7/ 2}, PlotStyle -» {trCol, abcCol}], {{ktr, 0.5}, 0.1, 0.8},
{{kabcl, 6.3}, 1.04, 254.0}, {{kabc2, 1.75}, 0.25, 2.5}]

Ktr

kabcl <:[]

kabc2

(]

(]

Out[49]=

We can see that an yabc value of about 1.75 fits pretty well to Trowbridge-Reitz across the roughness
range (less well for rough surfaces, better for smooth ones). Note that we don't have an equivalence
between them, so we just manually adjust the aabc parameter of the ABC curves until the peaks coin-
cide with the Trowbridge-Reitz ones.

Now let’s try to fit Phong with ABC:

13
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In[50]:= Manipulate[
Plot[{phong /. ap -» 8000.0K'°%P""9 aphc /. {aabc » kabcl, yabc » 1/ kabc2recip}},
{6, 0, x/2}, PlotStyle » {pCol, abcCol}], {{klogphong, 0.5}, 0.0, 1.0},
{{kabcl, 0.0905}, 0.0001, 10.0}, {{kabc2recip, 0.001}, 0.0001, 0.999}]

()]

klogphong

kabcl CD

kabc2recip CD

Out[50]=
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It seems that ABC asymptotically approaches Phong as the value of yabc approaches infinity (here we
also lacked an equivalence so we adjusted aabc values manually until the peaks matched).

Let's demonstrate ABC's fit to Trowbridge-Reitz with a static plot for yabc = 1.75, and to Phong with a
static plot for yabc set to a high value (1000):
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ns1= GraphicsRow [ {Plot[{trowbridgereitz /. atr - # & /@Range[0.3, 0.7, 0.1],

out[51]=

In[52]:=

Out[52]

In[53]:=

Out[53]

abc /. {aabc » #, yabc » 1.75} & /e {23.5, 11.6, 6.3, 3.55, 2.0}}, {6, 0, n/ 2},

PlotStyle -» {trCol, {abcCol, Thick, AbsoluteDashing[{2, 8}1}}1,

Plot[{phong /. ap -» ab2ap[#] & /@ Range[0.3, 0.7, 0.11,
abc /. {aabc -» #, yabc » 1000.0} & /e
{0.0212, 0.0114, 0.0068, 0.0043, 0.0026}}, {6, O, n/ 2},

PlotStyle » {pCol, {abcCol, Thick, AbsoluteDashing[{2, 8}1}}1}, ImageSize -» Full]
358
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Since they are not directly apparent from the Plot command, let's see the range of Phong parameters
covered in the right plot:

ab2ap[0.3]
20. 2222

ab2ap[0.7]
2. 08163

As we have seen, with an yabc value of 1.75, ABC can mimic Trowbridge-Reitz quite well. With higher
values, ABC can approach the appearance of Phong. (It should be noted that these are much higher
than any of the values fitted to the Matusik dataset by Low et al.; this may indicate that real-world
materials do not typically exhibit Gaussian normal distributions.) With yabc values lower than 1.75, the
ABC distribution is even “spikier” than Trowbridge-Reitz; we will look at a value of 0.5 (a relatively low
value for the Matusik dataset fitting performed in the paper by Low et al. — lower values were only used
for very rough surfaces), comparing it to Trowbridge-Reitz (manually adjusted so the peaks match):
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nsa= GraphicsRow [ {Plot[{trowbridgereitz /. atr -» # & /@Range[0.5, 0.8, 0.1],
abc /. {aabc » #, yabc » 0.5} & /@ {82.5, 33.5, 14.0, 5.75}},
{6, 0, n/2}, PlotStyle -» {trCol, abcCol}],
Plot[{trowbridgereitz /. atr » & & /@Range[0.2, 0.5, 0.1],
abc /. {aabc -» #, yabc » 0.5} & /e {4250, 785, 240, 82.5}},
{6, 0, n/2}, PlotStyle -» {trCol, abcCol}]}, ImageSize -» Full]

8

out[54]=
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We see that with an yabc value of 0.5, ABC is significantly “spikier” than Trowbridge-Reitz when model-
ing rough surfaces (on the left), and extremely so when modeling smooth ones (on the right).

Shifted Gamma Distribution

asgd?+x

asngSQd'l @ asgd

nssi= P22[X_] ==
Gamma[l - ysgd, asgd] (asgd? + x) ve9d

p22 [ 1-Cos[6]? ]

Cos[e]?
In[56]:= Sgd =
nCos[e]?
7asgd27!\l—cos[012')3ec[mz vsad
outsel- | e asgd asgd 17599 Sec (9] (asgd? + (1 - Cos [6]2) Sec[0]?) **? J/

(mGamma [l - ysgd, asgd])

First, let's confirm that it's normalized, using an analytical integral:

ns7= sgdnormf = Integrate[sgd Sin[e] Cos[e],
{¢, -7, n}, {6, 0, 7w/ 2}, Assumptions -» {asgd > 0, ysgd > 0}]

ous7= 1

Yes, it's normalized. Let's take a look at various parameter values, spanning the rough-to-moderate part
of the range of values used for fitting SGD to the Matusik database:
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wser- plotlsgd[x_] := Labeled[Plot[sgd /. {asgd - #, ysgd -» x} & /@ {1.0, 0.5, 0.2, 0.1},
{6, 0, n/2}, PlotStyle » sgdCol], "ysga = " <>ToString[x] ]
plot2sgd[x_] := Labeled[PIot[sgd /- {asgd -» X, ysgd » #} &/@ {0.0, 0.5, 1.0, 1.5},
{6, 0, n/2}, PlotStyle » sgdCol], "asgq = "<>ToString[x]]
GraphicsGrid[{plotlsgd /e {0.0, 0.5, 1.0, 1.5}, plot2sgd /e {1.0, 0.5, 0.2, 0.1}},
ImageSize » Full, AspectRatio -» 0.25]
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In[61]

Out[61]=

Let's look at an interactive graph with the parameters covering the range of fitted values for the Matusik

database:

Manipulate[Plot[sgd /. {asgd » a, ysgd -» b}, {6, 0, «/ 2}, PlotStyle -» sgdCol],

{{a, 0.25}, 0.0001, 1.0}, {b, 0.0, 1.5}]
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Finally, let's compare it with ABC:

15
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nez= Manipulate[Plot[{sgd /. {asgd - a, ysgd - b}, abc /. {aabc - c, yabc -» d}},
{e, 0, 7/ 2}, PlotStyle -» {sgdCol, abcCol}], {{a, 0.25}, 0.0001, 1.0},
{{b, 1.0}, 0.0, 1.5}, {{c, 27.0}, 1.0, 1000.03}, {{d, 1.7}, 0.25, 2.5}]

()

cJ

()

a5t
out[62] 30 f
25 f
20 f
15 f
10 f

05F

15

We see that the SGD NDF goes quickly to 0.0 even for moderately smooth surfaces and cannot repli-
cate the “long tails” that ABC can produce. We also see that unlike ABC, the SGD NDF can model

slightly “super-rough” surfaces, though it's unclear how useful this feature is (also, the combination of
parameters that produces this behavior is not found in the material fitting performed by Bagher et al.).

Generalized Trowbridge-Reitz NDF

1

nez= unnormal izedgtr = " ;
(Cos[e]? (agtr?-1) + 1)7’g r

nes= gtrnormf = Integrate [unnormalizedgtr Sin[e] Cos[e],
{¢, -7, 7}, {6, 0, n/2}, Assumptions » {agtr > 0, ygtr > 0}]

7 (-1 +agtr22yer)

Out[64]= —

(-1+ogtr?) (-1+ygtr)

This function has singularities at ygtr = 1.0 and agtr = 1.0. However, we can generate specific normaliza-
tion terms for these values. These are the same as the limits of the more general function in the neigh-
borhood of these values, indicating that the singularities are removable:



In[65]:=

Out[65]

In[66]:=

out[66]=

In[67]:=

Out[67]=

In[68]

Out[68]=

In[69]:=

out[69]=

In[70]:=

Out[70]=
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gtrnormfgl = Integrate[ (unnormalizedgtr /. ygtr -» 1) Sin[e] Cos[e],
{¢$, -7, 7}, {6, 0, n/2}, Assumptions -» {agtr > 0}]

2 Loglagtr ]
-l+agtr?

Limit[gtrnormf, ygtr -» 1]
2 rLogagtr ]
-1 +ogtr?

gtrnormfal = Integrate[ (unnormalizedgtr /. agtr » 1) Sin[e] Cos[e],
{¢, -7, 7}, {6, 0, v/2}, Assumptions -» {ygtr > 0}]

Limit[gtrnormf, agtr - 1]

S

We'll create a piecewise form of the function covering the singularity cases, so that we can easily plot
the normalized NDF over a range of parameter values:

gtrnormfpw = Piecewise[{{gtrnormfal, agtr == 1}, {gtrnormfgl, ygtr == 1}}, gtrnormf]

bs agtr =1
2Loglagtr]
~l+agtr?
7 (-lrogtr2229tr)

- True
(-1+ogtr?) (-l+ygtr)

yogtr =1

unnormal izedgtr

gtr =
gtrnormfpw
(1+(-1+agtr?) Cos [e}zyyg“
7 oagtr =
% yotr =1
7 (ArogtrZ2eT) L e

- (-1+ogtr2) (-l+ygtr)

This normalization term has a somewhat complicated form, which is likely too expensive for perfor-
mance-critical applications such as games. However, when plotted it yields smooth curves, indicating
that it should be possible to create a simpler approximation for game use. Let us look at the behavior of
the normalized GTR NDF as its parameters are varied.
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In[71]:=

Out[73]=

plotlgtr[x_] := Labeled[Plot[gtr /. {agtr - #, ygtr » x} &/@{1.0, 0.5, 0.25, 0.1},
{6, 0, n/2}, PlotStyle » gtrCol], "ygr = " <>ToString[x] ]

plot2gtr[x_] := Labeled[Plot[gtr /. {agtr - X, ygtr » #} &/@{1.0, 1.5, 2.0, 2.5},
{6, 0, n/2}, PlotStyle » gtrCol], "ager = "<>ToString[x]]

GraphicsGrid[{plotlgtr/e {1.0, 1.5, 2.0, 2.5}, plot2gtr /e {1.0, 0.5, 0.25, 0.1}},
ImageSize » Full, AspectRatio - 0.25]

4
30
6
: 15 25 40
4 10 20 30F
3 15 20F
2 5 10 10k
1 5
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7

0.30F 15
025F : 40
0.20 F 1.0 2 30
0.15F 3 20k
0.10F 0.5 2

3 10}
0.05 1

05 10 15 0.5 10 15 05 1.0 15 0.5 1.0 15
agr =1 agr = 0.5 Qatr = 0.25 agr =0.1

As a generalized form of Trowbridge-Reitz, GTR inherits some of its properties. When the agtr parame-
ter is equal to 1.0, we get the uniform (constant) distribution. Decreasing agtr makes the surface
smoother (creating narrower and more intense highlights. Increasing agtr beyond 1.0 will create “super-
rough” surfaces (this behavior is very similar to Trowbridge-Reitz, so we won't bother plotting it). As with
ABC, the separation of roughness and shape is not perfect, so when varying ygtr you need to change
agtr to keep the same roughness.)

And here’s an interactive plot:
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n72i= Manipulate[Plot[gtr /. {agtr » a, ygtr » b}, {6, 0, n/ 2}, PlotStyle -» gtrCol],
{a, 0.01, 1.0}, {b, 1.0, 2.5}]

300
250
Out[74]=
200
150
100}

50f

0.5 10 15

Let’s see if we can fit Phong using GTR:
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In[75]:= Manipulate[
Plot[{phong /. ap -» 8000.0K'°P""9 gtr /. {agtr » kgtrl, ygtr » 1/ kgtr2recip}},
{6, 0, x/2}, PlotStyle » {pCol, gtrCol}], {{klogphong, 0.5}, 0.0, 1.0},
{{kgtrl, 0.9778}, 0.01, 1.0}, {{kgtr2recip, 0.001}, 0.0001, 0.999}]

klogphong

kgtrl 8:

kgtr2recip CD

(]

Out[75]=

0.5 10 15

Similarly to ABC, it appears that GTR asymptotically approaches Phong as the value of ygtr approaches
infinity (and also as with ABC, we don't have a known parameter equivalence so we adjusted agtr
values manually until the peaks matched). Let's demonstrate the match with a very high ygtr value
(10000) on a pair of static plots (one covering smoother surfaces and one covering rougher ones):
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ni7e= GraphicsRow[ {Plot[{phong /. ap > # & /@ {8, 4, 2, 1},
gtr /. {agtr -» #, ygtr » 10000} & /@ {0.999752, 0.999859, 0.99992, 0.999956}},
{6, 0, n/2}, PlotStyle » {pCol, gtrCol}],
Plot[{phong /. ap » # & /@ {100, 50, 25, 8}, gtr /. {agtr » &, ygtr -» 10000} & /e
{0.99745, 0.9987, 0.999325, 0.99975}}, {6, 0, n/ 2},
PlotStyle -» {pCol, {gtrCol, Thick, AbsoluteDashing[{2, 8}1}}1}, ImageSize -» Full]

Out[76]=

Of course, GTR can match Trowbridge-Reitz exactly since setting ygtr to 2.0 makes the two exactly
equivalent. Let's see if GTR can match the even “spikier” curves we get with ABC by setting yabc to 0.5:

n77= Manipulate[Plot[{abc /. {aabc -» kabc, yabc - 0.5}, gtr /. {agtr -» kgtrl, ygtr - kgtr2}},
{6, 0, 7/ 2}, PlotStyle -» {abcCol, gtrCol}], {{kabc, 10.0}, 5.0, 4000.0},
{{kgtrl, 0.1}, 0.01, 1.0}, {{kgtr2, 2.0}, 0.5, 2.5}]

kabc <D
kgtrl :D

kgtr2

cJ

out[77]=

0.5 10 15

We can see that an ygtr value of about 0.54 fits pretty well to ABC with yabc=0.5 across the roughness
range (better for smoother surfaces, slightly less well for rough ones). Note that we don’t have a known
equivalence between them, so we just manually adjust the agtr parameter of the GTR curves until the
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peaks coincide with the ABC ones. Let’s show the match with two static plots (one covering smoother
surfaces and one covering rougher ones):
n7er= GraphicsRow[ {Plot[{abc /. {aabc -» #, yabc - 0.5} & /e {100, 30, 15, 5},
gtr /. {agtr > #, ygtr » 0.54} & /@ {0.146, 0.251, 0.338, 0.517}}, {6, 0, n/ 2},
PlotStyle » {abcCol, {gtrCol, Thick, AbsoluteDashing[{2, 8}1}}1,
Plot[{abc /. {aabc -» #, yabc » 0.5} & /@ {4000, 750, 250, 100},
gtr /. {agtr » #, ygtr - 0.54} & /e {0.02625, 0.05725, 0.0955, 0.146}},
{6, 0, n/2}, PlotStyle -» {abcCol, {gtrCol, Thick, AbsoluteDashing[{2, 8}1}}1},
ImageSize -» Full]
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