

Real Shading in Unreal Engine 4

Brian Karis (brian.karis@epicgames.com)

Goals

- More realistic image
- Material layering
 - Better workflow
 - Blended in shader
- Timely inspiration from Disney
 - Presented in this course last year

Overview

- Shading model
- Material model
- Lighting model

Shading Model

Diffuse BRDF

- Lambert
 - Saw little effect of more sophisticated models

Specular BRDF

- Generalized microfacet model
 - Compared many options for each term
 - Use same input parameters

$$f(\mathbf{l}, \mathbf{v}) = \frac{D(\mathbf{h})F(\mathbf{l}, \mathbf{h})G(\mathbf{l}, \mathbf{v}, \mathbf{h})}{4(\mathbf{n} \cdot \mathbf{l})(\mathbf{n} \cdot \mathbf{v})}$$

Specular distribution

- Trowbridge-Reitz (GGX)
 - Fairly cheap
 - Longer tail looks much more natural

Geometric shadowing

• Schlick

- Matched to Smith
- Cheaper, difference is minor
- Uses Disney's roughness remapping*

Fresnel

- Schlick
 - Approximate the power

Identical for all practical purposes

Image-based lighting : Problem

- Only use single sample per environment map
- Match importance-sampled reference

$$\int_{H} L_{i}(\mathbf{l})f(\mathbf{l},\mathbf{v})\cos\theta_{\mathbf{l}}d\mathbf{l} \approx \frac{1}{N}\sum_{k=1}^{N}\frac{L_{i}(\mathbf{l}_{k})f(\mathbf{l}_{k},\mathbf{v})\cos\theta_{\mathbf{l}_{k}}}{p(\mathbf{l}_{k},\mathbf{v})}$$

Image-based lighting : Solution

- Same as Dimitar's: split the sum
- Pre-calculate both parts

$$\frac{1}{N}\sum_{k=1}^{N}\frac{L_{i}(l_{k})f(l_{k},v)\cos\theta_{l_{k}}}{p(l_{k},v)} \approx \left(\frac{1}{N}\sum_{k=1}^{N}L_{i}(l_{k})\right)\left(\frac{1}{N}\sum_{k=1}^{N}\frac{f(l_{k},v)\cos\theta_{l_{k}}}{p(l_{k},v)}\right)$$

Pre-filtered environment map

- 1st sum stored in cubemap mips
 - Pre-filter for specific roughness's
 - Fixed distribution, assume n = v
 - Loses stretched highlights

$$\frac{1}{N}\sum_{k=1}^{N}L_{i}(l_{k}) \approx \text{Cubemap. Sample(r, mip)}$$

Environment BRDF

• 2nd sum stored in 2D lookup texture (LUT)

Complete approximation (n=v)

Importance-sampled reference

Split sum approximation

Complete approximation (n=v)

Material Model

Material model

- BaseColor
 - Single color
- Metallic
 - Less chance of error
- Roughness
 - Very clear in its meaning
- Cavity
 - Used for small scale shadowing

Metallic 0 to 1

Metal with roughness 0 to 1

Non-metal with roughness 0 to 1

Material model lessons

- Specular parameter is confusing
 - Not really needed
 - Replaced with Cavity

Material layering

Material layering tools

- Added layers to our node graph based material editor
 - Layers use existing material function feature
 - Added material attributes struct
- Layer workflow similar to previous texture workflow

Material layering

4

Material layering

Lighting Model

Inverse square falloff

Area light requirements

• Consistent material appearance

- Energy evaluated with diffuse BRDF and specular BRDF should match

Approaches point light model as solid angle approaches zero

- Don't want to lose any aspect of our shading model

• Fast enough to use everywhere

- Otherwise artists will bias roughness

Specular D modification

- Widen specular distribution by light's solid angle
 - We presented this last year
- Problems
 - Glossy surfaces don't look glossy anymore

Specular D modification

Representative point

- Pick one representative point on light source shape
- Shading model can be used directly
- Point with largest contribution is a good choice
- Approximate using smallest angle to reflection ray

Sphere lights

- Irradiance identical to point light
 - If sphere above horizon
- Closest point between ray and sphere
 - Approximates smallest angle

Sphere light energy conservation

- Specular distribution has been widened by light's solid angle
 - We already have an approximation for this using "Specular D modification"
 - Only use normalization term
 - Divide out original normalization, multiply in new

Representative point applied to Tube Lights

In the course notes

- Tons of extra stuff
 - Importance sampling code
 - Area light formulas
 - Lots of math \bigcirc

Thanks

- Epic
 - Rendering team
 - All the artists making me look good
- Special thanks to Sébastien Lagarde
- Stephen Hill and Stephen McAuley for valuable input

