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Introduction 
 
We started pursuing Physically Based Lighting during the development of Call of Duty: 
Black Ops. The details were presented at SIGGRAPH 2011 as part of the Advances in 
Real-Time Rendering course [11]. Here we’ll give a brief recap of the important bits 
relevant for this course and then describe the improvements we did during the 
development of Call of Duty: Black Ops II.  
 
Summary of Physically Based Shading in Call of Duty: Black Ops  
 
For the diffuse response we used the classic Lambertian BRDF. This talk will be all about 
the specular response. 
 
We calculate our specular response out of two parts: direct and indirect. The direct 
component is calculated in the pixel shader from analytical sources (point lights), while 
the indirect component is reconstructed from environment maps, rendered offline at 
artist-selected locations. 
 
Direct Specular (Analytical light) 
 
We used a microfacet BRDF based on Cook-Torrance[2][3]: 
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Here D is the normal distribution function (NDF), F is the reflectance function and G is 
the shadowing-masking (or geometry) function. 
 
We factored the BRDF into three components, such that it’s easier to swap different 
formulations and approximations.  
 
Since we’re using the BRDF with point lights, we need to multiply it by π1. It’s 
convenient to group this and the division by 4 together as Dpl: 
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We also grouped G with the divide by ))(( vnln ⋅⋅ . This is often called the visibility 
function – V(l,v,h). 
 

                                                
1 See Naty Hoffman’s notes[6] for a derivation of the punctual light equation. 
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All combined: 
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We used Blinn-Phong as our distribution function: 
 

α

π
α )(
2
2)( hnhD ⋅

+
=  

 
Which for Dpl gives: 
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Here, α is the specular power parameter. 
 
We didn’t paint specular powers directly into our textures but instead we painted gloss 
values, g, a log base-8192 encoding of specular power: 
 

g8192=α  
 
We used the Schlick-Fresnel approximation as our reflectance function [12]: 
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Here rf0 is the base reflectance, or specular color value. In most materials this was 
painted directly into textures; however we had a special case dielectric material that used 
an implicit value of 0.04 linear. 
 
We used the Schlick-Smith approximation as our visibility function [13]: 
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Despite the extra cost we found that it was very important to have a high quality visibility 
function for natural-looking specular response. 
 
Indirect Specular (Environment map) 
 
Environment map normalization 



 
Traditionally, when dealing with environment maps, we constantly struggled between the 
memory cost and the accuracy of reflections for a given location. To alleviate these 
problems we came up with a technique that let us better “fit” an environment map to the 
surroundings where it’s being applied. We called this technique environment map 
normalization. 
 
First, offline, we “normalized” the environment map image: we divided the radiance at 
each texel by the average irradiance at the place where the environment map was 
captured. Then, in the pixel shader, we sampled the environment map and scaled it by the 
average irradiance calculated2 at that pixel.  
 
Environment map filtering 
 
We used CubeMapGen [1] to pre-filter the environment map’s mip-map chain. For each 
mip level we used angular Gaussian filter with increasing size, based on the reference 
values provided in the CubeMapGen documentation. In the pixel shader we manually 
selected the mip level as a function of the gloss value: 
 

texCUBElod( uv, float4( R, nMips - gloss * nMips ) ) 

 
 
Environment BRDF 
 
In the pixel shader we multiplied the pre-filtered environment map sample with a Fresnel 
factor. Initially we used the Schlick-Fresnel )( vn ⋅ based function, but it quickly became 
obvious this was not enough to match the specular response we were getting from our 
analytical sources. We derived a new empirical version, which included a gloss-based 
term, that effectively had the role of a shadowing-masking function. 
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At the time we continued to refer to this as a Fresnel function, but in this talk we’ll use 
the term Environment BRDF3, since it’s a better description of its purpose. We’ll discuss 
this in more detail in the following sections. 
 

                                                
2  Usually this is easily derived from data that is already present in the lightmap or any 
other form of light baking. 
3 In other published materials this has also been termed an Ambient BRDF [4][5].  
 



Getting More Physical in Call of Duty: Black Ops II 
 
Direct Specular 
 
We were pretty happy with the quality of the direct specular, so for Black Ops II we 
primarily focused on performance improvements. 
 
We tried to optimize the BRDF parts in isolation and combined. In the end, it appeared 
individual approximations gave us the best tradeoff between accuracy and speed. 
 
New Fresnel function approximation 
We used Mathematica to plot and compare candidate curves, and searched for cheap 
approximations via trial and error4.  
In the end, we managed to optimize the Fresnel function with this approximation5: 
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Figure 1 – 2D plot comparing F and Fopt 
 
We dialed it for minimum error at small angles, since the vast majority of pixels on 
screen tend to fall into this category. 
 
 
New Visibility function approximation 
 
This part was done outside of Mathematica. The primary idea was to look for an 
approximation similar to the Kelemen-Szirmay-Kalos [8] approximation to the Cook-
Torrance Shadowing-Masking function; replacing a complex function with a simpler one, 
which is dependent only on )( hv ⋅  or )( hl ⋅  – the two are interchangeable. Since the 

                                                
4 Refer to the accompanying Mathematica notebook for more details. 
5 Note that Fopt saves 1 instruction on current generation GPUs but is not necessarily an 
optimization on newer GPUs. 



original function is multi-dimensional, it's hard to visualize it in Mathematica. Instead we 
used a shader test framework and tried various functions of )( hv ⋅  vs. the current 
expression, on a range of geometry with representative Black Ops II normal and gloss 
maps. In the end, we found that the following function was a pretty good match over 
various gloss values: 
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Figure 2 - 3D plot comparing V and Vopt with gloss values of 0.0, 0.5 and 1.0 
 
The approximation diverges from the original at large angles, although these cases tend to 
be rare. In game there was little visual difference and the speed increase was significant, 
so we decided to use it in the shipping game. 
 
 
Indirect Specular  
 
All three components of the indirect specular had visual problems that our content 
creators often complained about. It’s fair to say we spent the majority of our effort during 
the project getting our indirect specular to be a closer match to the direct specular. 
 



Improved environment map normalization 
 
The normalization appeared to have certain inconsistencies in the reflection amount over 
meshes employing different types of light baking. In particular, lightmapped surfaces 
seemed to have problems recovering the correct intensity compared to objects that used 
light probes.  
 
Analyzing the problem revealed that the denormalization step yields incorrect results 
with light encodings that only capture a hemisphere of irradiance. For example, a 
reflection probe placed above the ground would see “sky” and “ground”, while the 
ground surface itself would only see “sky”. Hence when the ground surface attempts to 
denormalize the reflection, it has no way to compensate for the “ground” part of the 
irradiance. 
 
One solution would be to perform the normalization using irradiance – for example 
against the geometric normal of a surface – instead of average irradiance. By definition, 
the irradiance covers a hemisphere and as such would solve the problem case described 
above. However, since a given environment map might be applied to surfaces of different 
orientations (and hemispheres respectively), we can’t bake the normalization into the 
image anymore and there would be some cost to performing this at run-time. 
 
Fortunately, we came up with a relatively cheap approach that accomplishes this.  
First, we capture the diffuse irradiance at the same location where the environment map 
was captured. We encode it as 3rd-order Spherical Harmonics, or “SH9” (9 terms), which 
in practice we store as a tint plus 9 scalar SH coefficients for efficiency6.  
During rendering, we set up the SH coefficients as shader constants. In the vertex shader 
we evaluate the SH against the vertex normal (which gives us the environment map’s 
irradiance in that direction) and then pass it down to the pixel shader as the normalization 
factor. Finally, the pixel shader samples the environment map, applies the normalization 
factor, and immediately rescales it by the per-pixel irradiance as before. 
 
In pseudo code: 
 
Old method: 
Offline: 

env_sh9 = capture_sh9(env_pos); 
env_average_irradiance = get_sh_coeff(env_sh9, 0); 
for_each(texel in environment map) 

  texel /= env_average_irradiance; 

PS: 
env_color = sample(env_map) * pixel_average_irradiance; 

 
New method: 
Offline: 

env_sh9 = capture_sh9(env_pos); 

                                                
6 The majority of our problem cases were related to incorrect intensity and less so to 
incorrect color.  



VS: 
env_irradiance = eval_sh(env_sh9, vertex_normal); 

PS: 
env_color = sample(env_map) / env_irradiance * pixel_ irradiance; 

 
The new method heavily minimized the visual problems we were seeing. There were still 
very subtle discrepancies due to the approximate nature of the SH encoding, and in 
particular, the tinted scalar SH we had to use for performance reasons. 
 
The new method added about 8 instructions to the vertex shader, 1 interpolator and 1 
instruction to the pixel shader. However, we didn’t see a measurable drop in frame rate 
when we deployed it in the actual game7. 
 

 

                                                
7 Our game is heavily pixel shader bound so this was not entirely surprising. 
 



 
Figure 3 – A pair of in-engine screenshots comparing the old method (above) and the new method (below). 
The image shows just the environment map’s specular contribution overexposed for easier comparison. The 
three buses use three different light baking methods – lightmap (left), vertex bake (middle), light probe 
(right). Notice how the new method achieves much closer specular response between the three. 
 



Improved environment map filtering 
 
When accessing the environment map’s pre-filtered mip chain, we use a linear function 
of our gloss value. However, the Gaussian filter we were previously using on Black Ops 
was not blurring exactly the way our gloss would “blur” the point lights. Fortunately, the 
CubeMapGen tool was open-sourced around the time we started looking into improving 
our filtering. We extended the CubeMapGen filtering framework with a new cosine 
power filter8. 
 
For each mip level we calculated the corresponding gloss and specular power, which we 
then used to drive the cosine power filter. Note that this effectively ties the maximum 
environment map resolution with the maximum specular power.  
 
On Black Ops we used 256x256 resolution environment maps, but for Black Ops II we 
realized that we could drop the resolution to 128x128, since our maximum specular 
power of 8192 was over-blurring the 256x256 images, so we were gaining nothing from 
the higher resolution. 
 
It is also important to note that we need to convert the Blinn-Phong specular powers to 
Phong specular powers. This is necessary since we perform the environment map lookup 
via a reflection vector, which follows the Phong shading model. Dividing the Blinn-
Phong specular power by 4 appears to be a good approximation to a Phong highlight [10].  
 

                                                
8 Similar work was done independently by Sébastien Lagarde, who has since published 
the modifications [9]. 
 
 



 
Figure 4 – A pair of in-engine screenshots comparing the old method (above) with the new method (below). 
The back row of spheres has rf0 = 0.04, while the front row of spheres has rf0 = 1, with gloss values linearly 
spanning the range between the spheres. Notice how the new method blurs much more linearly across the 
gloss range and it’s a closer match to the sun’s hot-spot “blur”. 
 
 
Improved Environment BRDF 
 
The empirical Environment BRDF we used in Black Ops was only a rough estimate. 
Consequently, our content creators often complained about inconsistent behavior between 
the direct and indirect specular for low gloss values and oblique angles. We knew this 
was something we had to address, so early on in the development of Black Ops II we set 
about deriving a better formulation. 
  
First, let’s start with the integral that we’re trying to approximate: 
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Note that the distribution function has a π in the denominator, since we’re using the 
BRDF with environment map radiance values (as opposed to point light values). 
 
One way to compute this integral would be to importance-sample the environment map in 
the pixel shader and evaluate the BRDF for each sample. This was quite an expensive 
proposition for our game, so instead we made an approximation by splitting the integral 
into two parts, with the idea that it would be easier to calculate them separately: 
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The first part represents environment map filtering (blurring), and the second part is the 
Environment BRDF.  
 
It’s important to note that this split is exactly correct for the case where the environment 
map is a constant color. As is typical outdoors, an environment map containing the sky is 
often low frequency – particularly on a clear or overcast day – so this approximation is 
not entirely off-base.  
 
The environment map filtering is further approximated via the offline pre-filtering 
described in the previous section. For the Environment BRDF, we attempted to find 
cheap analytical expressions for common cases that could be evaluated directly in the 
pixel shader. Elsewhere in this course, Brian Karis from Epic Games, will show an 
alternative approach to solving this integral [7]. 
 
Our approach was to calculate “ground truth” curves via numerical integration in 
Mathematica. 
 
Based on examination of the Schlick-Fresnel factor in our BRDF, the full integral can be 
calculated as a linear interpolation between the integrals for base reflectance of 0.0 and 
base reflectance of 1.0, weighted with the actual value of the base reflectance. 
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Thus, we integrated our cosine-weighted BRDF for varying gloss values (specular 
powers) into two sets of “ground truth” curves, with base reflectance of 0.0 and 1.0 
respectively.  
 
For the exact Mathematica expressions please take a look at the accompanying 
Mathematica notebook. 
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Figure 5 – 2D plot of “ground truth” curves rf0 = 0 with gloss values of 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0 
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Figure 6 – 2D plot of “ground truth” curves rf0 = 1 with gloss values of 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0 
 
Once we had the “ground truth” curves we proceeded to fit analytical expressions that 
would match them as closely as possible. Finding these expressions was done mostly via 
trial and error. For some ideas on how to approach this, please refer to the accompanying 
Mathematica notebook. 
 
First we focused on accurate approximations:  



 
float a0( float g, float NoV ) 
{ 
 float t1 = 11.4 * pow( g, 3 ) + 0.1; 

float t2 = NoV + ( 0.1 – 0.09 * g ); 
return (1 – exp( -t1 * t2 ) ) * 1.32 * exp2( -10.3 * NoV ); 

} 
 

float a1( float g, gloat NoV ) 
{ 

float t1 = max( 1.336 – 0.486 * g, 1); 
float t2 = 0.06 + 3.25 * g + 12.8 * pow( g, 3 ); 
float t3 = NoV + min( 0.125 – 0.1 * g, 0.1 ); 
return min( t1 – exp2( -t2 * t3 ), 1 ); 

} 

 
Later we optimized the expressions by noting areas of the curves that had little visual 
impact in game: 
 
float a0f( float g, float NoV ) 
{ 

float t1 = 0.095 + g * ( 0.6 + 4.19 * g ); 
float t2 = NoV + 0.025; 
return t1 * t2 * exp2( 1 – 14 * NoV ); 

} 
 

float a1f( float g, float NoV ) 
{ 
 float t1 = 9.5 * g * NoV; 

return 0.4 + 0.6 * (1 – exp2( -t1 ) ); 
} 
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Figure 7 – 2D plot comparing the “ground truth” curves rf0 = 0 (dotted) with the a0 (solid) and a0f 
(dashed) approximations 
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Figure 8 - 2D plot comparing the “ground truth” curves rf0 = 1 (dotted) with the a1 (solid) and a1f (dashed) 
approximations 
 
The new Environment BRDF approximations solved a good percentage of the cases 
where our artists complained of the environment reflections being too bright, particularly 
for dielectric/low-gloss materials. However the approximations were still fairly expensive. 
 
At this point, we decided to focus on the special case of rf0 = 0.04 – a common value for 
many dielectric materials – especially since we have a higher-performance “simple” 
(dielectric-only) shader that can avoid the reflectance interpolation entirely.  
Again we used Mathematica to calculate ground truth curves for the rf0 = 0.04 case, with 
gloss values of 0.0, 0.5 and 1.0. 
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Figure 9 – 2D plot of the “ground truth” curves rf0 = 0.04 with gloss values of 0.0, 0.5 and 1.0 
 
 
And then we proceeded to find the closest and cheapest fit for this special case. 



 
float a004( float g, float NoV ) 
{ 

float t = min( 0.475 * g, exp2( -9.28 * NoV ) ); 
return ( t + 0.0275 ) * g + 0.015; 

} 
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Figure 10 – 2D plot comparing the “ground truth” curves rf0 = 0.04 (dotted) with the a004n approximation 
(solid) 
 
 
For performance reasons we ended up using a very cheap expression for the rf0 = 1.0 case. 
Metals are relatively rare in our game and the ones we had looked good even with this 
very coarse approximation: 
 
float a1vf( float g ) 
{ 

return 0.25 * g + 0.75; 
} 

 
Finally, we reconstructed the rf0 = 0 case by extrapolating from the rf0 = 0.04 case and 
the rf0 = 1.0 case. 
 
float a0r( float g, float NoV ) 
{ 

return ( a004( g, NoV ) - a1vf( g ) * 0.04 ) / 0.96; 
} 

 



The final approximation: 
 
float3 EnvironmentBRDF( float g, float NoV, float3 rf0 ) 
{ 

float4 t = float4( 1/0.96, 0.475, (0.0275 - 0.25 * 0.04)/0.96, 0.25 ); 
t *= float4( g, g, g, g ); 
t += float4( 0, 0, (0.015 - 0.75 * 0.04)/0.96, 0.75 ); 
float a0 = t.x * min( t.y, exp2( -9.28 * NoV ) ) + t.z; 
float a1 = t.w; 
return saturate( a0 + rf0 * ( a1 - a0 ) ); 

} 

 

 

 
Figure 11 – A pair of in-engine screenshots comparing the old (above) and new (below) method. Notice 
with the old method the unnatural amount of environment reflection on the shadowed side of the red truck. 
The new method provides a much more natural looking specular response. 
 
 
It’s fair to say the final Environment BRDF approximation gave us pretty satisfactory 
visual results given our tight performance budgets. The dielectric special case was only 5 
pixel shader instructions, while the full approximation was 7 instructions. This compared 
favorably to the Black Ops empirical “Fresnel” which was 8 instructions. 
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