
Dimitar Lazarov, Lead Graphics Engineer, Treyarch

Introduction

We started pursuing Physically Based Lighting during the development of Call of Duty:
Black Ops. The details were presented at SIGGRAPH 2011 as part of the Advances in
Real-Time Rendering course [11]. Here we’ll give a brief recap of the important bits
relevant for this course and then describe the improvements we did during the
development of Call of Duty: Black Ops II.

Summary of Physically Based Shading in Call of Duty: Black Ops

For the diffuse response we used the classic Lambertian BRDF. This talk will be all about
the specular response.

We calculate our specular response out of two parts: direct and indirect. The direct
component is calculated in the pixel shader from analytical sources (point lights), while
the indirect component is reconstructed from environment maps, rendered offline at
artist-selected locations.

Direct Specular (Analytical light)

We used a microfacet BRDF based on Cook-Torrance[2][3]:

))((4
),,(),()(),,(

vnln
hvlGhlFhDhvlBRDF

⋅⋅
=

Here D is the normal distribution function (NDF), F is the reflectance function and G is
the shadowing-masking (or geometry) function.

We factored the BRDF into three components, such that it’s easier to swap different
formulations and approximations.

Since we’re using the BRDF with point lights, we need to multiply it by π1. It’s
convenient to group this and the division by 4 together as Dpl:

)(
4

)(hDhDpl
π

=

We also grouped G with the divide by))((vnln ⋅⋅ . This is often called the visibility
function – V(l,v,h).

1 See Naty Hoffman’s notes[6] for a derivation of the punctual light equation.

))((
),,(),,(
vnln
hvlGhvlV
⋅⋅

=

All combined:

),,(),()(),,(hvlVhlFhDhvlBRDF plpl =

We used Blinn-Phong as our distribution function:

α

π
α)(
2
2)(hnhD ⋅

+
=

Which for Dpl gives:

αα)(
8
2)(hnhDpl ⋅

+
=

Here, α is the specular power parameter.

We didn’t paint specular powers directly into our textures but instead we painted gloss
values, g, a log base-8192 encoding of specular power:

g8192=α

We used the Schlick-Fresnel approximation as our reflectance function [12]:

5
00)1)(1(),(lhrfrfhlF ⋅−−+=

Here rf0 is the base reflectance, or specular color value. In most materials this was
painted directly into textures; however we had a special case dielectric material that used
an implicit value of 0.04 linear.

We used the Schlick-Smith approximation as our visibility function [13]:

))1)()(()1)(((
1),,(

)2(
2

kkvnkkln
hvlV

k

+−⋅+−⋅
=

+
=

απ

Despite the extra cost we found that it was very important to have a high quality visibility
function for natural-looking specular response.

Indirect Specular (Environment map)

Environment map normalization

Traditionally, when dealing with environment maps, we constantly struggled between the
memory cost and the accuracy of reflections for a given location. To alleviate these
problems we came up with a technique that let us better “fit” an environment map to the
surroundings where it’s being applied. We called this technique environment map
normalization.

First, offline, we “normalized” the environment map image: we divided the radiance at
each texel by the average irradiance at the place where the environment map was
captured. Then, in the pixel shader, we sampled the environment map and scaled it by the
average irradiance calculated2 at that pixel.

Environment map filtering

We used CubeMapGen [1] to pre-filter the environment map’s mip-map chain. For each
mip level we used angular Gaussian filter with increasing size, based on the reference
values provided in the CubeMapGen documentation. In the pixel shader we manually
selected the mip level as a function of the gloss value:

texCUBElod(uv, float4(R, nMips - gloss * nMips))

Environment BRDF

In the pixel shader we multiplied the pre-filtered environment map sample with a Fresnel
factor. Initially we used the Schlick-Fresnel)(vn ⋅ based function, but it quickly became
obvious this was not enough to match the specular response we were getting from our
analytical sources. We derived a new empirical version, which included a gloss-based
term, that effectively had the role of a shadowing-masking function.

g
vnrfrfvlF
34
)1()1(),(
5

00 −

⋅−
−+=

At the time we continued to refer to this as a Fresnel function, but in this talk we’ll use
the term Environment BRDF3, since it’s a better description of its purpose. We’ll discuss
this in more detail in the following sections.

2 Usually this is easily derived from data that is already present in the lightmap or any
other form of light baking.
3 In other published materials this has also been termed an Ambient BRDF [4][5].

Getting More Physical in Call of Duty: Black Ops II

Direct Specular

We were pretty happy with the quality of the direct specular, so for Black Ops II we
primarily focused on performance improvements.

We tried to optimize the BRDF parts in isolation and combined. In the end, it appeared
individual approximations gave us the best tradeoff between accuracy and speed.

New Fresnel function approximation
We used Mathematica to plot and compare candidate curves, and searched for cheap
approximations via trial and error4.
In the end, we managed to optimize the Fresnel function with this approximation5:

)(10
00 2)1(),(lh

opt rfrfhlF ⋅−−+=

F

Fopt

0.0 0.2 0.4 0.6 0.8 1.0
HoL

0.2

0.4

0.6

0.8

1.0

Figure 1 – 2D plot comparing F and Fopt

We dialed it for minimum error at small angles, since the vast majority of pixels on
screen tend to fall into this category.

New Visibility function approximation

This part was done outside of Mathematica. The primary idea was to look for an
approximation similar to the Kelemen-Szirmay-Kalos [8] approximation to the Cook-
Torrance Shadowing-Masking function; replacing a complex function with a simpler one,
which is dependent only on)(hv ⋅ or)(hl ⋅ – the two are interchangeable. Since the

4 Refer to the accompanying Mathematica notebook for more details.
5 Note that Fopt saves 1 instruction on current generation GPUs but is not necessarily an
optimization on newer GPUs.

original function is multi-dimensional, it's hard to visualize it in Mathematica. Instead we
used a shader test framework and tried various functions of)(hv ⋅ vs. the current
expression, on a range of geometry with representative Black Ops II normal and gloss
maps. In the end, we found that the following function was a pretty good match over
various gloss values:

)1()(
1),(

)545.0,0.1min(

2 khvk
hvV

gk

opt −+⋅
=

+=

Figure 2 - 3D plot comparing V and Vopt with gloss values of 0.0, 0.5 and 1.0

The approximation diverges from the original at large angles, although these cases tend to
be rare. In game there was little visual difference and the speed increase was significant,
so we decided to use it in the shipping game.

Indirect Specular

All three components of the indirect specular had visual problems that our content
creators often complained about. It’s fair to say we spent the majority of our effort during
the project getting our indirect specular to be a closer match to the direct specular.

Improved environment map normalization

The normalization appeared to have certain inconsistencies in the reflection amount over
meshes employing different types of light baking. In particular, lightmapped surfaces
seemed to have problems recovering the correct intensity compared to objects that used
light probes.

Analyzing the problem revealed that the denormalization step yields incorrect results
with light encodings that only capture a hemisphere of irradiance. For example, a
reflection probe placed above the ground would see “sky” and “ground”, while the
ground surface itself would only see “sky”. Hence when the ground surface attempts to
denormalize the reflection, it has no way to compensate for the “ground” part of the
irradiance.

One solution would be to perform the normalization using irradiance – for example
against the geometric normal of a surface – instead of average irradiance. By definition,
the irradiance covers a hemisphere and as such would solve the problem case described
above. However, since a given environment map might be applied to surfaces of different
orientations (and hemispheres respectively), we can’t bake the normalization into the
image anymore and there would be some cost to performing this at run-time.

Fortunately, we came up with a relatively cheap approach that accomplishes this.
First, we capture the diffuse irradiance at the same location where the environment map
was captured. We encode it as 3rd-order Spherical Harmonics, or “SH9” (9 terms), which
in practice we store as a tint plus 9 scalar SH coefficients for efficiency6.
During rendering, we set up the SH coefficients as shader constants. In the vertex shader
we evaluate the SH against the vertex normal (which gives us the environment map’s
irradiance in that direction) and then pass it down to the pixel shader as the normalization
factor. Finally, the pixel shader samples the environment map, applies the normalization
factor, and immediately rescales it by the per-pixel irradiance as before.

In pseudo code:

Old method:
Offline:

env_sh9 = capture_sh9(env_pos);
env_average_irradiance = get_sh_coeff(env_sh9, 0);
for_each(texel in environment map)

 texel /= env_average_irradiance;

PS:
env_color = sample(env_map) * pixel_average_irradiance;

New method:
Offline:

env_sh9 = capture_sh9(env_pos);

6 The majority of our problem cases were related to incorrect intensity and less so to
incorrect color.

VS:
env_irradiance = eval_sh(env_sh9, vertex_normal);

PS:
env_color = sample(env_map) / env_irradiance * pixel_ irradiance;

The new method heavily minimized the visual problems we were seeing. There were still
very subtle discrepancies due to the approximate nature of the SH encoding, and in
particular, the tinted scalar SH we had to use for performance reasons.

The new method added about 8 instructions to the vertex shader, 1 interpolator and 1
instruction to the pixel shader. However, we didn’t see a measurable drop in frame rate
when we deployed it in the actual game7.

7 Our game is heavily pixel shader bound so this was not entirely surprising.

Figure 3 – A pair of in-engine screenshots comparing the old method (above) and the new method (below).
The image shows just the environment map’s specular contribution overexposed for easier comparison. The
three buses use three different light baking methods – lightmap (left), vertex bake (middle), light probe
(right). Notice how the new method achieves much closer specular response between the three.

Improved environment map filtering

When accessing the environment map’s pre-filtered mip chain, we use a linear function
of our gloss value. However, the Gaussian filter we were previously using on Black Ops
was not blurring exactly the way our gloss would “blur” the point lights. Fortunately, the
CubeMapGen tool was open-sourced around the time we started looking into improving
our filtering. We extended the CubeMapGen filtering framework with a new cosine
power filter8.

For each mip level we calculated the corresponding gloss and specular power, which we
then used to drive the cosine power filter. Note that this effectively ties the maximum
environment map resolution with the maximum specular power.

On Black Ops we used 256x256 resolution environment maps, but for Black Ops II we
realized that we could drop the resolution to 128x128, since our maximum specular
power of 8192 was over-blurring the 256x256 images, so we were gaining nothing from
the higher resolution.

It is also important to note that we need to convert the Blinn-Phong specular powers to
Phong specular powers. This is necessary since we perform the environment map lookup
via a reflection vector, which follows the Phong shading model. Dividing the Blinn-
Phong specular power by 4 appears to be a good approximation to a Phong highlight [10].

8 Similar work was done independently by Sébastien Lagarde, who has since published
the modifications [9].

Figure 4 – A pair of in-engine screenshots comparing the old method (above) with the new method (below).
The back row of spheres has rf0 = 0.04, while the front row of spheres has rf0 = 1, with gloss values linearly
spanning the range between the spheres. Notice how the new method blurs much more linearly across the
gloss range and it’s a closer match to the sun’s hot-spot “blur”.

Improved Environment BRDF

The empirical Environment BRDF we used in Black Ops was only a rough estimate.
Consequently, our content creators often complained about inconsistent behavior between
the direct and indirect specular for low gloss values and oblique angles. We knew this
was something we had to address, so early on in the development of Black Ops II we set
about deriving a better formulation.

First, let’s start with the integral that we’re trying to approximate:

∫ ωω dhvlBRDFlEnv env)cos(),,()(

Where:

α

π
α)(
8
2)(hnhDenv ⋅

+
=

),,(),()(),,(hvlVhlFhDhvlBRDF envenv =

Note that the distribution function has a π in the denominator, since we’re using the
BRDF with environment map radiance values (as opposed to point light values).

One way to compute this integral would be to importance-sample the environment map in
the pixel shader and evaluate the BRDF for each sample. This was quite an expensive
proposition for our game, so instead we made an approximation by splitting the integral
into two parts, with the idea that it would be easier to calculate them separately:

()()∫∫ ωωωω dhvlBRDFdhDlEnv envenv)cos(),,()cos()()(4

The first part represents environment map filtering (blurring), and the second part is the
Environment BRDF.

It’s important to note that this split is exactly correct for the case where the environment
map is a constant color. As is typical outdoors, an environment map containing the sky is
often low frequency – particularly on a clear or overcast day – so this approximation is
not entirely off-base.

The environment map filtering is further approximated via the offline pre-filtering
described in the previous section. For the Environment BRDF, we attempted to find
cheap analytical expressions for common cases that could be evaluated directly in the
pixel shader. Elsewhere in this course, Brian Karis from Epic Games, will show an
alternative approach to solving this integral [7].

Our approach was to calculate “ground truth” curves via numerical integration in
Mathematica.

Based on examination of the Schlick-Fresnel factor in our BRDF, the full integral can be
calculated as a linear interpolation between the integrals for base reflectance of 0.0 and
base reflectance of 1.0, weighted with the actual value of the base reflectance.

5
00)1)(1(),(lhrfrfhlF ⋅−−+=

∫ ∫∫ ⋅−−+= ωωωωωω dlhVDrfdVDrfdBRDF envenvenv)cos()1()1()cos()cos(5
00

Thus, we integrated our cosine-weighted BRDF for varying gloss values (specular
powers) into two sets of “ground truth” curves, with base reflectance of 0.0 and 1.0
respectively.

For the exact Mathematica expressions please take a look at the accompanying
Mathematica notebook.

0.0 0.2 0.4 0.6 0.8 1.0
NoV

0.1

0.2

0.3

0.4

0.5

Figure 5 – 2D plot of “ground truth” curves rf0 = 0 with gloss values of 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0

0.0 0.2 0.4 0.6 0.8 1.0
NoV

0.2

0.4

0.6

0.8

1.0

Figure 6 – 2D plot of “ground truth” curves rf0 = 1 with gloss values of 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0

Once we had the “ground truth” curves we proceeded to fit analytical expressions that
would match them as closely as possible. Finding these expressions was done mostly via
trial and error. For some ideas on how to approach this, please refer to the accompanying
Mathematica notebook.

First we focused on accurate approximations:

float a0(float g, float NoV)
{
 float t1 = 11.4 * pow(g, 3) + 0.1;

float t2 = NoV + (0.1 – 0.09 * g);
return (1 – exp(-t1 * t2)) * 1.32 * exp2(-10.3 * NoV);

}

float a1(float g, gloat NoV)
{

float t1 = max(1.336 – 0.486 * g, 1);
float t2 = 0.06 + 3.25 * g + 12.8 * pow(g, 3);
float t3 = NoV + min(0.125 – 0.1 * g, 0.1);
return min(t1 – exp2(-t2 * t3), 1);

}

Later we optimized the expressions by noting areas of the curves that had little visual
impact in game:

float a0f(float g, float NoV)
{

float t1 = 0.095 + g * (0.6 + 4.19 * g);
float t2 = NoV + 0.025;
return t1 * t2 * exp2(1 – 14 * NoV);

}

float a1f(float g, float NoV)
{
 float t1 = 9.5 * g * NoV;

return 0.4 + 0.6 * (1 – exp2(-t1));
}

0.2 0.4 0.6 0.8 1.0
NoV

0.1

0.2

0.3

0.4

0.5

Figure 7 – 2D plot comparing the “ground truth” curves rf0 = 0 (dotted) with the a0 (solid) and a0f
(dashed) approximations

0.0 0.2 0.4 0.6 0.8 1.0
NoV

0.2

0.4

0.6

0.8

1.0

Figure 8 - 2D plot comparing the “ground truth” curves rf0 = 1 (dotted) with the a1 (solid) and a1f (dashed)
approximations

The new Environment BRDF approximations solved a good percentage of the cases
where our artists complained of the environment reflections being too bright, particularly
for dielectric/low-gloss materials. However the approximations were still fairly expensive.

At this point, we decided to focus on the special case of rf0 = 0.04 – a common value for
many dielectric materials – especially since we have a higher-performance “simple”
(dielectric-only) shader that can avoid the reflectance interpolation entirely.
Again we used Mathematica to calculate ground truth curves for the rf0 = 0.04 case, with
gloss values of 0.0, 0.5 and 1.0.

0.0 0.2 0.4 0.6 0.8 1.0
NoV

0.1

0.2

0.3

0.4

0.5

Figure 9 – 2D plot of the “ground truth” curves rf0 = 0.04 with gloss values of 0.0, 0.5 and 1.0

And then we proceeded to find the closest and cheapest fit for this special case.

float a004(float g, float NoV)
{

float t = min(0.475 * g, exp2(-9.28 * NoV));
return (t + 0.0275) * g + 0.015;

}

0.0 0.2 0.4 0.6 0.8 1.0
NoV

0.1

0.2

0.3

0.4

0.5

Figure 10 – 2D plot comparing the “ground truth” curves rf0 = 0.04 (dotted) with the a004n approximation
(solid)

For performance reasons we ended up using a very cheap expression for the rf0 = 1.0 case.
Metals are relatively rare in our game and the ones we had looked good even with this
very coarse approximation:

float a1vf(float g)
{

return 0.25 * g + 0.75;
}

Finally, we reconstructed the rf0 = 0 case by extrapolating from the rf0 = 0.04 case and
the rf0 = 1.0 case.

float a0r(float g, float NoV)
{

return (a004(g, NoV) - a1vf(g) * 0.04) / 0.96;
}

The final approximation:

float3 EnvironmentBRDF(float g, float NoV, float3 rf0)
{

float4 t = float4(1/0.96, 0.475, (0.0275 - 0.25 * 0.04)/0.96, 0.25);
t *= float4(g, g, g, g);
t += float4(0, 0, (0.015 - 0.75 * 0.04)/0.96, 0.75);
float a0 = t.x * min(t.y, exp2(-9.28 * NoV)) + t.z;
float a1 = t.w;
return saturate(a0 + rf0 * (a1 - a0));

}

Figure 11 – A pair of in-engine screenshots comparing the old (above) and new (below) method. Notice
with the old method the unnatural amount of environment reflection on the shadowed side of the red truck.
The new method provides a much more natural looking specular response.

It’s fair to say the final Environment BRDF approximation gave us pretty satisfactory
visual results given our tight performance budgets. The dielectric special case was only 5
pixel shader instructions, while the full approximation was 7 instructions. This compared
favorably to the Black Ops empirical “Fresnel” which was 8 instructions.

Acknowledgements

I’d like to thank Naty Hoffman for his invaluable contribution to the physically based
shading in our game and for helping me understand the intricacies of the math behind it;
Marc Olano for answering my numerous questions along the way; Jorge Jimenez and
Sebastien Lagarde for the insightful and thought-provoking email conversations; Stephen
Hill and Stephen McAuley for reviewing and helping me prepare this talk. And last but
not least, I’d like to thank the team at Treyarch for making a fantastic game, without
which none of this would’ve been possible.

References

[1]	
 AMD,	
 CubeMapGen:	
 Cubemap	
 Filtering	
 and	
 Mipchain	
 Generation	
 Tool.	

http://developer.amd.com/resources/archive/archived-­‐tools/gpu-­‐tools-­‐
archive/cubemapgen/	

[2]	
 Cook,	
 Robert	
 L.,	
 and	
 Kenneth	
 E.	
 Torrance,	
 “A	
 Reectance	
 Model	
 for	
 Computer	
 Graphics",	

Computer	
 Graphics	
 (SIGGRAPH	
 '81	
 Proceedings),	
 pp.	
 307-­‐316,	
 July	
 1981.	

[3]	
 Cook,	
 Robert	
 L.,	
 and	
 Kenneth	
 E.	
 Torrance,	
 “A	
 Reectance	
 Model	
 for	
 Computer	
 Graphics",	

ACM	
 Transactions	
 on	
 Graphics,	
 vol.	
 1,	
 no.	
 1,	
 pp.	
 7-­‐24,	
 January	
 1982.	

http://graphics.pixar.com/library/ReflectanceModel/	

[4]	
 Drobot,	
 Michal,	
 “Lighting	
 Killzone:	
 Shadow	
 Fall",	
 Digital	
 Dragons,	
 April	
 2013.	

http://www.guerrilla-­‐games.com/publications/	

[5]	
 Gotanda,	
 Yoshiharu,	
 “Practical	
 Implementation	
 of	
 Physically-­‐Based	
 Shading	
 Models	
 at	

tri-­‐Ace",	
 part	
 of	
 “Physically-­‐Based	
 Shading	
 Models	
 in	
 Film	
 and	
 Game	
 Product",	
 SIGGRAPH	

2010	
 Course	
 Notes.	
 	

http://renderwonk.com/publications/s2010-­‐shading-­‐course/	

[6]	
 Hoffman,	
 Naty,	
 “Background:	
 Physics	
 and	
 Math	
 of	
 Shading",	
 part	
 of	
 “Physically	
 Based	

Shading	
 in	
 Theory	
 and	
 Practice",	
 SIGGRAPH	
 2013	
 Course	
 Notes.	

http://blog.selfshadow.com/publications/s2013-­‐shading-­‐course/	

[7]	
 Karis,	
 Brian,	
 “Real	
 Shading	
 in	
 Unreal	
 Engine	
 4",	
 part	
 of	
 “Physically	
 Based	
 Shading	
 in	

Theory	
 and	
 Practice",	
 SIGGRAPH	
 2013	
 Course	
 Notes.	

http://blog.selfshadow.com/publications/s2013-­‐shading-­‐course/	

[8]	
 Kelemen,	
 Csaba,	
 and	
 Laszlo	
 Szirmay-­‐Kalos,	
 “A	
 Microfacet	
 Based	
 Coupled	
 Specular-­‐Matte	

BRDF	
 Model	
 with	
 Importance	
 Sampling,"	
 Eurographics	
 2001,	
 short	
 presentation,	
 pp.	
 25-­‐34,	

September	
 2001.	
 	

http://www.fsz.bme.hu/~szirmay/scook_link.htm	

[9]	
 Lagarde,	
 Sebastien,	
 “AMD	
 Cubemapgen	
 for	
 physically	
 based	
 rendering",	
 September	
 2011.	

http://seblagarde.wordpress.com/2012/06/10/amd-­‐cubemapgen-­‐for-­‐physically-­‐based-­‐
rendering/	

[10]	
 Lagarde,	
 Sebastien,	
 “Relationship	
 between	
 Phong	
 and	
 Blinn	
 lighting	
 model",	
 March	

2012.	
 	

http://seblagarde.wordpress.com/2012/03/29/relationship-­‐between-­‐phong-­‐and-­‐blinn-­‐
lighting-­‐model/	

[11]	
 Lazarov,	
 Dimitar,	
 “Physically-­‐based	
 lighting	
 in	
 Call	
 of	
 Duty:	
 Black	
 Ops",	
 part	
 of	

“Advances	
 in	
 Real-­‐Time	
 Rendering	
 in	
 3D	
 Graphics	
 and	
 Games",	
 SIGGRAPH	
 2011	
 Course	

Notes.	
 	

http://advances.realtimerendering.com/s2011/	

[12]	
 Schlick,	
 Christophe,	
 “An	
 Inexpensive	
 BRDF	
 Model	
 for	
 Physically	
 based	
 Rendering,"	

Computer	
 Graphics	
 Forum,	
 vol.	
 13,	
 no.	
 3,	
 Sept.	
 1994,	
 pp.	
 149-­‐162.	
 	

http://dept-­‐info.labri.u-­‐bordeaux.fr/~schlick/DOC/eur2.html	

[13]	
 Akenine-­‐Moller,	
 Tomas,	
 Eric	
 Haines,	
 and	
 Naty	
 Hoffman,	
 “Real-­‐Time	
 Rendering,	
 third	
 edition”,	
 A	

K	
 Peters	
 Ltd.,	
 2008, pp. 262

