Getting More Physical in

CALL'DUTY

BLACK OPS I

Dimitar Lazarov
Lead Graphics Engineer, Treyarch

We started pursuing Physically Based Shading during Black Ops, details of which |
presented at SIGGRAPH 2011, as part of the “Advances in Real-Time Rendering”
course.

Here I'll present a brief summary of the important aspects and then dive into
improvements we made on Black Ops II.

Black Ops: shading model

* Diffuse response
— Direct: analytical lights
— Indirect: lightmaps, light probes
— Lambertian BRDF
* Specular response
— Direct: analytical lights
— Indirect: environment maps
— Microfacet BRDF

Black Ops: Microfacet BRDF

* Based on Cook-Torrance:

D, (h) = %D(h)
l

* pl = point light

D = normal distribution function (NDF)
F = reflectance function (Fresnel function)
G = shadowing-masking function (Geometry function)

Grouped into three “lego” pieces for easier experimentation with different
formulations and approximations.

D_pl = NDF for point lights grouped with pi/4.

V = visibility function: shadowing-masking grouped with foreshortening terms.

Black Ops: normal distribution function

* Blinn-Phong:

a+2 4
D5(h) = : (n-h)

a: specular power

* Energy conserving
* Physically plausible stretchy highlights
* Cheaper replacement for Beckmann NDF (with parameter conversion)

Black Ops: reflectance function

* Schlick-Fresnel:

F(l,h)=rfy + (- 7f)A—h-I)’

rf,: base reflectance (specular color)

Microfacet H-dot-L-based formulation.

Everyone seems to use this.

Black Ops: visibility function

* Schlick-Smith:

2

Jr(a+2)

4]
— ((n-D(1-k)+ k) (n- v)(1- k) + k)

V(. v, h)

* Compared favorably to:
e Novisibility V(I, v, h) =1
* Cook-Torrance and Kelemen/Szirmay-Kalos (no gloss/roughness consideration)

Schlick-Smith gave the most plausible (albeit the most expensive) specular response.

Lesson learned: very important to have high quality shadow-masking for PBS.

* Method to “fit” the environment map’s reflection to varying lighting
conditions

Switching gears: indirect specular via environment maps.

We capture environment maps at artist-selected locations in the level.

We wanted to use as few and as high resolution environment maps as possible.
We came up with a method that lets us better “fit” and hence “reuse” the same

environment map in very different lighting environments compared to where the
environment map was captured.

Black Ops: normalization algorithm

Offline:
env_sh9 = capturelNshoi(EnviEos)/
env_average irradiance = env sh9[0];
for each (texel in environment map)
texel /= env_average irradiance;
Pixel Shader:

env_color = sample (env _map) * pixel average irradiance;

env_sh[0] is the DC term, which is equivalent to evaluating the SH with a (0, 0, 0)
direction.

pixel_average_irradiance can usually be calculated as a cheap byproduct from most
forms of light baking.

Black Ops: environment map pre-filtering

* Offline, CubeMapGen
— Angular Gaussian filter
— Edge fixup
* Pixel shader selects mip as a linear function of gloss:
texCUBElod (uv, float4 (R, nMips - gloss * nMips)):;

Black Ops: environment map “Fresnel”

* More than just Fresnel, included shadowing-masking factor
* Early attempt at deriving an “Environment BRDF”

(1-n-vy
4-39g

Fl,v)=rf, +(I—rt1,)

Here we’re using the N-dot-V form of the Fresnel formulation.

1/(4 — 3g) acts as a shadowing-masking factor

10

Getting More Physical in Call of Duty: Black Ops ||

* Direct Specular

— Very happy with the look

— Focused on performance improvements (details in the course notes)
* Indirect Specular

— Various deficiencies in the Black Ops methods

— The major focus of improvements

11

Environment map normalization: problem

* Average irradiance: poor choice for normalization

Light probe
\‘f

NG . A

>

Lightmap

The picture shows conceptually the problem through the use of colors. In practice,
the problems were mostly intensity related and less often about color.

The environment map is normalized from a light probe sample (full sphere of lighting
information).

However, lightmap bakes often store only a hemisphere worth of information, hence
when we de-normalize the environment map we can’t compensate for the missing
hemisphere.

12

Environment map normalization: new idea

* Normalize with irradiance
— Can’t bake normalization offline

— Pass environment map’s directional irradiance to run-time
(used tinted scalar 3™-order Spherical Harmonics)

13

Improved normalization algorithm

Offline:

env_sh9 = capture sh9(env pos)¥

Vertex Shader:
env_irradiance = eval sh(env sh9, vertex normal);

Pixel Shader:
env_color = sample(env_map)/env_irradiance * pixel irradiance;

pixel_irradiance can usually be calculated as a cheap byproduct of most forms of light
baking. It’s virtually guaranteed to exist considering geometric normal irradiance is

the most important direction to reproduce correctly.

14

Lightmap. . — "\(ertexbake . L\ Light probe

The same mesh with three different light bakes.

The image shows environment specular, boosted 3 stops for easier comparison.

15

r {5
"

1

g W
e %
4)
-

Lig}htmap;f’-"'-' ,i Vertex bake B AT (010 . Light probe

&

Notice how the specular from the different light bakes is a lot closer now.

16

Improved environment map pre-filtering

Customized CubeMapGen with cosine power filter

— Concurrent work with Sébastien Lagarde

Each mip level filtered with matching gloss / specular power
Top mip “resolution” tied to max specular power

— Dropped environment map resolution from 256x256 to 128x128
Blinn-Phong to Phong specular power conversion:

O(phong & O(blinn—phong / 4

The Black Ops pre-filtering used a Gaussian, which was not an exact match to our
cosine power distribution function.

17

18

L sun hotspot

Notice how the environment map blurs much more linearly across the gloss range.

Also notice how the environment blur is a closer match to the sun hotspot diffusion.

19

Environment lighting: ground truth

* Environment lighting integral

[Env(1)BRDE,,(1,v, h)cos(@)da

!

D, (WFL RV 1y, h) Dem,(h):a;z (n-h)®
T

Before we talk about how we improved the Environment BRDF, let’s talk about what
we’re trying to solve first.

One option for solving this integral is to importance sample the environment map

and the BRDF in the pixel shader. This is very expensive, but it’s a good ground truth.

Note that the environment NDF has a division by pi, as opposed to the point-light
NDF which does not.

20

Environment lighting: split approximation

* Split the integral: easier to calculate the parts separately

(4j Env(/)D,,,(h) COS(a))a’a)XI BRDEF,, (1,v,h) cos(a))da))

Environment map filtering Environment BRDF
(also referred to as “Ambient BRDF”)

| |

Approximate with mip map Approximate with cheap analytical
pre-filtering expressions

Environment BRDF: conceptually you can think of it as the BRDF result for a white
environment map.

21

Environment BRDF: reflectance interpolation

* From the Fresnel formulation:

F(l,hy=rfy +(=rf)A=h-1y

/TN

'[BRDE,,“, cos(w)dw = rf;,J-Dem,V cos(@)da +(1—rf,)I D, V(1—h-1)’ cos(w)dw

22

Numerical integration in Mathematica

* Plotted two sets of ground-truth curves for rf,=0and rf,=1
* Each set contained curves for gloss values 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0

On the x-axis we plot N-dot-V, where rf0O is to the right, glancing angles are to the left.

23

Approximate curves: accurate

* HLSL expressions in the course notes

We fitted curves by trial and error, using Mathematica to guide the process.

24

Approximate curves: cheaper

e e e

* HLSL expressions in the course notes

We deployed the “cheaper” curves, with good visual results. However, we needed
even cheaper expressions.

25

Focus on rf, = 0.04

Needed faster approximations

We had a special-case “simple” material (dielectric only) with a hardcoded
specular color of 0.04

Most of our environment specular problems revolved around dielectrics
Metals looked good even with the cheapest approximations:

float alvf(float g)

{
return 0.25 * g + 0.75;

}

26

Approximate curves: rf, = 0.04

float a004 (float g, float NoV)

{

min (0-4758 “Rgiexp@i= o 28 * Nolg) ;

float t =

(t + 0.0275)EcEEEmONIT" >

return

27

Final approximation

float alOr(float g, float NoV)
{

return (a004 (g, NoV) - alvf(g) * 0.04) / 0.96;
}

float3 EnvironmentBRDF (float g, float NoV, float3 rf0)
{
float4 t = floatd4(1/0.96, 0844EEF(G. 0275 - 0.25*0.04)/0.96,
t *= floaté4(g, g9, g9, 9);
t += float4 (0, 0, (0.015 - ¥0.¥#5<0.04)/0.96, 0.75);
float a0 = t.x * min(t.y, exp2(-9.28 * NoV)) + t.z;
float al = t.w;
return saturate (a0 + rf0 * (al - a0));

This is what we shipped with.

It was actually faster than the Black Ops Environment “Fresnel”.

28

29

Notice the much more natural looking specular on the shadowed side of the truck.
The car paint is a dielectric material (non-metallic paint).

30

Acknowledgments

Naty Hoffman

Marc Olano

Jorge Jimenez

Sébastien Lagarde

Stephen Hill & Stephen McAuley
The team at Treyarch

31

We are hiring

You can find a list of our open positions at
. Here is just a sample of what
Treyarch currently has available:

Senior Graphics Engineer

Senior Concept Artist-Vehicles/Weapons
Senior Artist-Vehicles/Weapons
Technical Animator

32

Bonus slides

33

Black Ops Il: new Fresnel approximation

* Used Mathematica to fit

candidate curves E)pt (Lhy=rf,+(1- rfO)Z—IO(h-l)

Note: this is to approximate the (1 — H-dot-L)A5 part of Schlick’s Fresnel function.

34

Black Ops Il: new visibility function approximation

* Visually matched in game k =min(1.0, g + 0.545)
1

(not an exact fit, but much faster)

Vo (V, 1)

RGP k)

35

