
Physically Based Shader Design in Arnold

by Anders Langlands

1 Introduction

alShaders is an open-source, production shader library for Arnold. It was created as a hobby project,
both as a learning exercise for the author to get to grips with the Arnold SDK, as well as to fill a gap
in the Arnold toolset, since no production-quality library existed that was available or fully functional
across all of the DCC applications supported by Arnold. It was made open source in order that others
might learn from it and hopefully contribute to its development. Since its inception in 2012, it has
seen action in many studios around the world and across a wide variety of work.

In this document, we will examine what constitutes a production shader library and examine the
design choices that shaped the form alShaders would take. As we will see, many of those choices
follow naturally from the design of the renderer itself, so we will also take a brief look at the design of
Arnold. We will primarily focus on the design of the surface shader, alSurface, examining the way it
is structured in order to create a simple-to-use, physically plausible shader. We will cover the outputs
it generates and how they are intended to be used within a visual effects pipeline. We will also look
at some of the tricks employed to reduce noise and render faster, even if it sometimes means breaking
physical correctness.

Finally, we will see what other choices could have been made in its design, along with possible
areas for improvement in the future, including potentially fruitful research avenues based on recent
work within the graphics community.

1



Figure 1: Examples of work using alShaders. Images used with permission, courtesy of (clockwise, from top-left): Nozon,
Storm, Brett Sinclair, Phil Amelung & Daniel Hennies, Psyop, Pascal Floerks.

2 What Makes a Production Shader Library?

A full-featured shader library should be able to correctly shade the vast majority of assets that come
through a typical production pipeline. This means that we need surface shaders to handle the most
common materials: skin, fibers, metal, plastics, glass etc. Ideally these materials should be handled
with as few different shaders as possible, so that users do not have to learn multiple interfaces (or
make a judgment call about which shader is best for a particular material), and to reduce the amount
of code maintenance required. In alShaders all of these materials are handled by alSurface, with
the notable exception of fibers, for which we provide alHair. Multiple surface shaders can be layered
together with alLayer to create more complex materials.

In order to create realistic materials, users must be able to generate patterns to drive material
parameters, either by reading from textures or through procedural noise functions. In most Digital
Content Creation (DCC) applications such as Maya, file-based textures are fairly deeply ingrained
within the application’s workflow, so we rely on translating the application’s native functionality. For
procedurals we provide several different noise types, such as alFractal and alCellNoise.

2



These patterns must usually be remapped and blended together in a variety of ways in order to
get the desired final appearance, so we provide nodes for basic mathematical operations on both colors
and floats (alCombineColor/Float) as well as nodes for remapping their values in ways such as in-
put/output range selection, contrast and gamma (alRemapColor/Float). Several nodes—in particuar
the procedural patterns—include remapping controls directly so as to reduce the amount of nodes
required for a given network, for the sake of performance and network legibility.

Finally, more complicated shading setups might require knowledge of the geometry of the scene
such as surface curvature (alCurvature), normal directions and point positions (alInputVector), or
selecting or caching subnetworks for efficiency (alSwitch and alCache, respectively).

Figure 2: Different materials created using a combination of alSurface, alLayer, alHair, procedural noise, remapping
and blending nodes. Head model by Lee Perry-Smith. Hair model by Cem Yuksel.

3 Design Philosophy

In this section, we will examine the philosophy that guided the choices made in designing the shader
library. Many of us in the visual effects industry have spent a significant amount of time trying to turn
PRMan into a physically based renderer1, often with limited success. That experience teaches us that
it is better to play to a renderer’s strengths (and manage its limitations), rather than trying to write
a whole new renderer inside a shader.

3.1 Arnold

Arnold is an extremely fast, brute-force, unidirectional path tracer. It is targeted primarily at efficient
rendering of the massive data sets typical in high-end visual effects production and is therefore tuned
to offer the fastest possible ray tracing, while keeping the lowest possible memory footprint.

Although brute-force Monte Carlo may seem decidedly “old school” compared to the myriad ad-
vanced algorithms available to choose from today, it fits perfectly with the guiding principle behind
much of Arnold’s design, namely that CPU time is cheaper than artist time. In comparison, whilst
algorithms such as photon mapping and irradiance caching can generate high-quality results in a short
time frame, they rely on the user understanding and correctly setting a whole host of extra parameters
that can interact in unintuitive ways. Managing these parameters requires extra artist time, which is
expensive and could be better spent making a shot look good. Furthermore, setting these parameters
incorrectly could make a long render unusable due to flickering or other artifacts.

1Interestingly, Pixar have now taken a leaf out of Arnold’s book and gone fully raytraced as well.

3



Figure 3: Arnold continually reduces both render time and memory usage with each release.

In contrast, the brute-force approach presents the user with a simple choice: take less samples
for a faster, noisier result, or take more samples for a slower, cleaner result. Tuning a scene to get
the desired level of noise in the desired amount of time then becomes a matter of setting a small
number of parameters that interact with each other in very predictable ways, and can often be set per
sequence—perhaps even once for the entire show—and then forgotten about, leaving the lighting artist
to concentrate on lighting.

In order to make the renderer fast enough to handle actual production workflows without any of
the complex cheats out there, Arnold concentrates on multiple importance sampling (MIS) and highly
efficient sample distribution in order to reduce the number of samples that need to be used to produce
a clean result from any given scene.

The API itself is C and fairly low level, giving shader writers the choice of either relying on the
built-in integration and MIS functions or writing their own. Rays are traced strictly in order and
Arnold provides a message-passing API to allow communication between different vertices of a single
path.

Figure 4: Examples of Solid Angle’s published research on sampling techniques.

4



3.2 The Design of alShaders

These characteristics lead us naturally to a set of guiding design principles for the development of the
library, ensuring that we use Arnold in the most effective way possible.

Don’t Try to Turn Arnold Into Something It’s Not: Understand the strengths of the
renderer—raytracing speed, sampling efficiency, etc.—and use those features to solve the rendering
equation. In particular there should be no interpolation or precalculation of illumination.

Simplicity: Choose algorithms that use as few parameters as possible, or reparameterize to make the
user interface simple.

Predictability: User parameters should drive changes in the shading result in a predictable way. If
the user inputs a color value (say, with a texture map), then the shader result should be as close to
that color as possible without introducing unexpected color shifts due to the algorithms used. Scalar
parameters should, wherever possible, be remapped to produce a linear response to input.

Efficiency: Use multiple importance sampling for everything, and in particular use Arnold’s built-in
sampling routines wherever possible, to allow the renderer to manage sample distribution efficiently.
The user should not have to worry about edge cases; the renderer should perform reasonably well in
every situation and the user should not have to remember dozens of rules, such as: if it’s this type of
scene, I have to enable this parameter.

Scalability: We are aiming for production-quality rendering, so motion blur is a necessity. Conse-
quently, we should use algorithms and techniques that work efficiently at high camera sample counts.

Plausibility: Finally, we take it for granted that all algorithms should be physically plausible. More-
over, Simplicity should apply here so that plausible materials are made as simple as possible. The
user should not have to worry about whether they’ve achieved the look they want “in the right way”.
In other words, if it looks right, it is right.

4 The Layered Uber-Shader Model vs. The BSDF-Stack Model

The first question to answer when designing a new shader is: do you want it to be an uber shader or a
stack shader? In recent times, BSDF-stack models have become more fashionable, while uber-shader
models have fallen out of favour. In this section we will examine the pros and cons of each model with
respect to our stated design philosophy.

4.1 The BSDF-Stack Model

The BSDF stack is normally implemented as a series of BSDF shading nodes connected to a Stack
shader that is responsible for handling the light and sampling loops and accumulating the results from
each connected BSDF node. This model offers a number of attractive features, namely:

Flexibility: The design is extremely flexible, as the user can combine whatever BSDFs they like in
order to create their materials.

Simple Interface: Only the required controls are exposed. If the user desires a material with only
a single specular lobe, for example, they do not have to wade through a sea of unused parameters to
get to the ones they are interested in.

5



Figure 5: A BSDF-stack node graph representation.

Rapid Prototyping: It is easy to try out new BSDF models. If one wishes to deploy a new specular
BRDF for testing, or to solve a specific problem, all that is required is to create a new BSDF node to
implement it. Existing shader networks can remain unchanged while the new BRDF is evaluated.

However, this extra flexbility comes at a cost:

High Maintenance: BSDF stacks require a significant overhead to set up and maintain. There is a
lot of clicking and connecting required just to create a simple plastic shader. This is often mitigated by
creating a shader template system to quickly create basic material types, but then that system itself
requires maintaining and keeping up to date with new shader versions. For example, if one wishes to
switch specular BRDF globally for an improved model, all shader templates must now be updated.

Hard to Tame: BSDF stacks are harder to optimize and constrain for energy conservation. Since
BSDF nodes operate conceptually in isolation, it requires more work on the programmer’s part to
optimize their operation and ensure energy conservation, either by adding lots of logic to the Stack, or
by having the BSDF nodes communicate with each other, which breaks encapsulation.

Easy to Break: “Anything is possible” is not always a good thing; it is extremely easy to create
completely nonsensical material models, or incredibly inefficient material stacks (consider ten specular
layers each with a weight of 0.1, for example). Either the programmer must detect and try to handle
such cases, or the artists using the system must be trained and monitored not to break things. Essen-
tially, one is trading extra overhead—in keeping an eye on what artists are doing—for flexbility that
is required in a tiny percentage of real-world cases.

4.2 The Layered Uber-Shader Model

The layered uber-shader model removes user choice in what layers are available and instead provides
a single “chunk” of material. This is most often combined with a separate layer shader to allow users
to blend multiple materials together to create more complex effects. All light and sampling loops and
their accumulation are explicitly handled by the uber shader.

6



Figure 6: An uber-shader node graph representation.

The advantages of this model are:

Easy to Maintain: It is quicker to set up and easier to maintain compared to the stack model.
Creating a basic material is as simple as creating the shader and changing a couple of parameters.
Shading networks are smaller and easier to understand.

High Performance: It is easier to optimize for speed. Since everything in the light and sampling
loops is completely under the main shader’s control, results can be reused and BSDF layers balanced
against one another without the need for complex control logic or message passing.

Robust: If implemented correctly, it should be nearly impossible for a user to create a non-physical
or nonsensical material. This means less time debugging scenes and allows artists to experiment freely
without fear of breaking anything.

But it does have some limitations:

Unfiltered Interface: Whether the artist is using them or not, all parameters are visible all the
time, potentially making it harder to find the ones they want.

Dependencies: It is harder to implement new techniques. Much greater care must be taken when
adding a new algorithm to ensure that existing scenes don’t change look or degrade performance.
Interface-breaking or look-changing rollouts must be managed carefully. On the plus side, it is easier
to do like-for-like comparisons between old and new techniques simply by switching shader binaries.

Uncompromising: Sometimes you really do need four speculars! We are targeting the real world of
production, where physical correctness occasionally has to be “thrown out the window” to satisfy a
client. Fortunately, the cases where there is no other solution than to break physical plausibility are
extremely rare.

Given our stated design goals of simplicity, predictability and efficiency, it is obvious that the uber-
shader model is a better fit for our needs. In other renderers with different aims, or even in Arnold for a
different, more specific workflow—if one were trying to build a system for researching new algorithms,
for example—a BSDF stack might be a better choice.

7



5 The alSurface Layered Model

We will do a bit of hand waving here and simply state that in our experience, roughly ninety percent of
materials used in production can be modeled well with a diffuse or transmissive base plus one specular
lobe, and nearly everything else by adding an additional specular lobe. With that in mind, Figure 7
shows how these components are layered together in alSurface.

Figure 7: The layer model used by alSurface.

As shown in the diagram, we have either a semi-infinite diffuse (subsurface scattering) or transmis-
sive base, covered by one or two (glossy) specular layers.

In the current model, the layers themselves have no thickness: they are simply an infinitely thin
scattering interface that either reflects light, or transmits it to the layer immediately below it. Balancing
different combinations of these layers can produce a huge variety of different effects.

In terms of parameters (see Figure 9), each layer has a Strength and a Color parameter, which are
just scalar and vector multipliers on the layer’s result, respectively. Each layer also has an Advanced sec-
tion, which contains more low-level, non-look-based parameters for fine-tuning the shader’s behaviour
and performance.

5.1 Diffuse

The diffuse base layer uses either an Oren-Nayar BRDF [ON94] with an optional backfacing lobe for do-
ing thin-surface translucency effects, or a multi-lobe, cubic BSSRDF. The user can linearly interpolate
between the BRDF and BSSRDF with the Mix parameter as an additional control on how “scattery”
they want the material to appear. The two are mixed linearly to ensure energy conservation, and the
BSSRDF is normalized so that the final albedo can be user controlled (or mapped) by the Diffuse

Color parameter. We found this preferable to trying to directly invert the scattering parameters from
the color map, since it guarantees the expected result in the simplest case and the user can map the
scattering parameters separately to achieve more complex effects.

The BSSRDF provided by the Arnold API is a multi-lobe kernel using either cubic or Gaussian
profiles. While Gaussians are more common in recent literature, we chose to use cubic profiles to
match the result from Arnold’s default shader, which users would already be familiar with. We use

8



Figure 8: Some example material types and their corresponding layer structures.

Figure 9: alSurface parameters as displayed in Maya’s Attribute Editor.

three lobes (although more are possible) for simplicity’s sake. Arnold internally samples all the profiles
using a very fast, fully raytraced, MIS algorithm [Kin+13]. The shape of each profile is controlled by
Distance and Color parameters—which together control the radius of the cubic—and the layers are
blended with Weight parameters, which are normalized before being used. Density scale just acts
as a multiplier on the radii, in order to easily adapt an existing look to a scene with a different unit
scale.

9



5.2 Specular

The specular layers use the Cook-Torrance BRDF provided by the Arnold API, which is an anisotropic
Beckmann distribution sampled using a modified version of the visible normal sampling technique
from Heitz and D’Eon [HD14]. The Roughness parameter is squared before being used in order to give
a more linear perceptual response, as in [Bur12]. Anisotropy controls the stretchiness of the highlight:
values less than 0.5 stretch in the U direction, and values greater than 0.5 stretch in the V direction.
The frame can be rotated using the Rotation parameter.

5.3 Transmission

Transmission also uses a Beckmann microfacet distribution. By default, the Link to Specular 1

parameter is enabled. This causes the transmission Roughness and IOR parameters to be linked to the
top specular layer, which is the most common configuration for dielectrics such as glass. Breaking this
link can be useful for modeling materials such as ice, or glass with one frosted side.

All transmission rays can be subject to Attenuation, either simply through absorption (Beer’s Law)
or including single scattering in order to simulate liquids and other scattering transmissive materials.
Users select the desired Color for the attenuation as well as the amount of Scattering (as opposed
to just absorption) and the appropriate attenuation coefficients are calculated for them internally.
Alternatively, users can use the controls in the Advanced section to specify attenuation coefficients
directly if they wish to use measured data, for example.

5.4 Energy Conservation

The energy conservation model in alSurface is extremely simple, which makes it robust and easy
to understand (Figure 10). Each layer is modeled as a microfacet scattering interface, where light
can either be reflected or transmitted (or absorbed), according to the Fresnel equations. The shader is
evaluated top down, proceeding to each layer in turn. Any energy that is not reflected at each interface
is assumed to be transmitted, and is available to be reflected at the next interface.

Note that since we assume the layers to be infinitely thin, we do not account for absorption within
the layers themselves, nor do we model the light travelling back out of the surface. Modeling absorption
and scattering within and between thin layers à la Weidlich and Wilkie [WW07] or Jakob et al. [Jak+14]
could be investigated in the future.

5.5 Fresnel

We use the standard Fresnel function for all layers, specified by a user-defined index of refraction
(IOR) value. This is all that is necessary in the case of dielectrics, and a reasonable approximation
of reflectance for conductors can be achieved by specifying a high IOR (e.g., 10–1000) and selecting a
specular color multiplier that matches the desired material. This is “good enough” in most cases (see
Figure 11), and has the advantage that if the surface is textured, the final color of the material can be
taken directly from that texture. That said, it does not capture the subtle color shift seen at glancing
angles in many metals; if this effect is required, we allow the user to specify measured reflectance
data by connecting an alFresnelConductor node to the layer’s IOR parameter. This node provides
angle-dependent Rec. 709 reflectances for a selection of common metals, which are precalculated and
stored in a lookup table in the shader, for performance. The result can also be normalized in order to
apply it to a textured specular color.

It is extremely important when calculating Fresnel to do so for the angle between the incident
light and the normal of each microfacet (i.e., the half-angle vector), not just once based on the view

10



Figure 10: Interface-based energy conservation. Incident white light is attenuated by fresnel transmittance only, and
reflected according to the parameters of each layer. If all layers are pure white, the shader will reflect 100% of the energy
it receives.

direction. This ensures that the Fresnel falloff behaves correctly as the microsurface roughness changes
(Figure 12).

11



Figure 11: Using a high (real) IOR with an appropriate specular color gives a reasonable match to measured data, but
lacks the color shifts visible at glancing angles.

Figure 12: Not calculating Fresnel per microfacet leads to artifically dull highlights at normal incidence and artifically
bright highlights or dark edges at glancing angles when used with a rough BSDF.

6 Efficiency Optimizations

6.1 Avoiding Caustic Paths

Caustics are generally defined as LSDE (Light Specular Diffuse Eye) paths—i.e., a specular bounce
followed by a diffuse bounce before reaching the eye. These paths are notoriously difficult to solve in a
unidirectional path tracer, so we explicitly disallow them in the shader by checking if the path we are
evaluating is diffuse. When this is the case, we simply turn off specular evaluations.

Unfortunately this isn’t a complete solution, as we can also generate caustic paths from glossy
bounces if the receiving surface has a higher roughness than the surface it is tracing against (Figure 13).
We cannot simply disallow these paths as that would kill many glossy self-reflections entirely! Instead

12



Figure 13: The floor is rougher than the silver sphere, which is rougher than the orange spheres. This results in “fireflies”.

we combat this by passing the current specular roughness down the ray tree. At each bounce, the
roughness of the current specular BRDF is clamped to be the same or higher than that at the previous
bounce. This causes slight changes in the shape of reflected highlights, but the difference is rarely
noticeable in practice and clears up the noise effectively (Figure 14).

Figure 14: We can resolve the reflections properly by clamping the minimum roughness down the ray tree, with only a
small change in appearance.

6.2 Russian Roulette

alShaders targets production rendering, which means rendering with motion blur. It is usually nec-
essary to render with high camera sample counts (e.g., 64–144 samples per pixel) in order to cleanly
resolve motion trails. Thus it is important to avoid doing redundant work as much as possible; the
noise in many shading effects will clear up at these sample rates, so it is possible to undersample them
to improve efficiency [Vea98].

The first candidate for Russian Roulette sampling is splitting (where a shader generates multiple
outgoing rays from a single incoming ray). Arnold will only split at the first bounce—at high sample

13



rates, most users will turn off splitting completely—but splitting still occurs because each BSDF in the
shader is sampled individually. This isn’t usually a problem for opaque surfaces, but for transmissive
surfaces such as glass, many bounces of both reflection and transmission may be required for correct
results, which can lead to an explosion in render time.

To combat this, rather than evaluate both reflection and transmission rays at each intersection, we
choose one or the other based on the Fresnel reflection coefficient. This dramatically reduces render
time for the same number of camera samples, and (at realistic sample rates) no additional noise is
discernable, as shown in Figure 15.

Figure 15: Using Russian Roulette to probabilistically choose between specular reflection and transmission dramatically
cuts the rendering time. In the case where both reflection and transmission depths were set to 10, the render without
Russian Roulette took too long to measure.

The second candidate for Russian Roulette is path termination. We track the throughput of the
current path using message passing, and probabilistically kill the path if it is unlikely that continuing
will contribute much to the image. We use a modified version of the spectral optimization technique
of Szécsi, Szirmay-Kalos, and Kelemen [SSK03] where our continuation probability pc is:

14



pc = min

(
1,

√
hmax(Ti · wi)

hmax(Ti)

)
(1)

Here, we use the horizontal component maximum, hmax, as the weighting function; Ti is the path
throughput up to the current path vertex and wi is the sample weight at the current vertex. We take
the square root in order to change how quickly path termination “kicks in”, which we’ve found gives
a further speed-up for little additional noise. If we could guarantee that extremely high sample rates
were going to used, then a linear mapping could improve efficiency, but we found it better to avoid
surprising users with extremely noisy images at low sample rates.

Early path termination is a nice performance win for an equivalent sample rate, while only intro-
ducing a small amount of extra noise (Figure 16). It also allows us to trace many more bounces at
very little cost, since only paths that actually contribute to the image are continued (Figure 17).

Figure 16: Using Russian Roulette for early path termination can significantly reduce render times, with a small increase
in variance.

Figure 17: Early path termination also allows arbitrarily high numbers of bounces to be used at little additional cost.

6.3 Sample Clamping

Although increases in fine-grained noise from Russian Roulette are acceptable2, fireflies can sometimes
be introduced when a path is continued with extremely low probability. To combat this, we provide
a control to optionally clamp the final sample brightness to some reasonable maximum (e.g., 10–20).
This can slightly darken the resulting image and clip highlights in certain circumstances, but it does
effectively eliminate fireflies from difficult-to-sample paths (Figure 18).

2The noise can double as film grain and responds well to increased sample counts and simple denoising algorithms.

15



Figure 18: A render of a glossy metallic skull showing fireflies (top). Clamping indirect specular paths to a maximum
value of 10 eliminates the bright pixels (bottom right) and in many cases does not otherwise affect the image.

7 Arbitrary Output Variables

Arbitrary Output Variables (AOVs) are an essential part of any production pipeline. Deciding what
outputs to support can often be difficult as there are a bewildering array of workflows to choose from,
and twice as many opinions on the best approach. Again, we focus on simplicity and split our AOVs
into four categories:

Shading: these separate each shading layer into direct and indirect components (direct diffuse, indirect
specular etc.).

Light: up to eight AOVs, separating light sources (or groups of light sources) into individual outputs.

ID: up to eight color AOVs that can be used for RGB mattes for compositing, or for plugging in
arbitrary channels (e.g., noise patterns).

Data: UVs, depth, facing-ratio passes, etc.

16



7.1 Light Groups

While the shading outputs are mainly included for legacy reasons, we prefer light groups for rebalancing
renders in “comp” (compositing). Rebalancing shading passes tends to break physical plausibility: we
have gone to great lengths to ensure that reflectance between different rough surface layers is carefully
balanced using Fresnel, and these effects cannot easily be tweaked in 2D for a global illumination
render without breaking realism.

In contrast, restricting balancing to light groups allows tweaking a render in comp while maintaining
physical accuracy. In order to achieve this, lights are assigned to one of eight light groups via a user-
defined integer parameter. We then track the contribution of each light group to the current traced
path (multiplying by each BSDF as we go) and output its contribution in a separate AOV. The
result is equivalent to performing separate renders for each light source individually, but dramatically
less expensive and easier to set up. The resulting light group AOVs can then be added together to
recreate the beauty render, or they can be multiplied by the compositing artist to change the color
and brightness of each light group without needing to re-render the scene. Figure 19 shows an example
render and its light groups, and Figure 20 some examples of physically correct scene rebalancing in a
compositing package using light groups.

Figure 19: A beauty render (top left) and its associated light group AOVs. The sun and sky light are output individually
while the practical light sources are grouped for easier control.

17



Figure 20: An example of the results of rebalancing the lights in the classroom scene in a compositing application to
create different ambiances.

8 Conclusions and Future Work

alShaders provides a full-featured production shader library. The surface shader, alSurface, can
realistically represent most commonly needed material types, and does so using a simple, easy-to-
understand energy conservation model. It is efficient, making use of Russian Roulette sampling tech-
niques to reduce shading cost in high-sample renders, and provides a flexible set of AOVs that can be
correctly rebalanced in comp. Being open source, it is easy for others to read and experiment with the
code, and fork it for modification in their own pipelines.

alShaders is also a work in progress. The direction of future development of the surface shader
will encompass a much more rigorous sampling and Russian Roulette scheme for the different layers
of the shader, rather than the ad hoc model proposed here. We are also keen to research an effective
method of modeling the multiple scattering of light between microfacets to reclaim the energy lost by
traditional single-scattering BSDFs.

Physically based rendering is a dynamic and exciting field and there are always new techniques
to try. In particular, we are currently working on implementing the energy conserving, importance-
sampled hair model by d’Eon, Marschner, and Hanika [dMH13] as an efficient replacement for the
“Franken”-Marschner model combination of Ou et al. [Ou+12] and Zinke et al. [Zin+08] currently
used by alHair. Furthermore, the directional dipole by Frisvad, Hachisuka, and Kjeldsen [FHK13], is
a simple alternative to traditional subsurface scattering kernels and produces better results, so it is a
good candidate for improving rendering of skin in alShaders.

LEADR mapping by Dupuy et al. [Dup+13] is an excellent solution for preserving the look of
surface microstructure at different screen sizes, which is a common problem in production. It’s a good
fit for us as it can be importance sampled efficently, and also provides a path to building custom
microfacet distributions for user-defined microstructures, such as the warp and weft of cloth. Yan et
al. [Yan+14] cover a similar area of research, but capture high-frequency changes in specular response
that cannot be accounted for with current models, and could be a useful addition for cases such as
metallic flakes in car paint, so as long as it can be implemented without overcomplicating the shader.

18



9 Acknowledgements

Marcos Fajardo and the rest of the Solid Angle team both for writing Arnold in the first place and
for the guidance and support offered during the development of this library.

Espen Nordahl and Magnus Bruland at Storm for their contributions (alCache, alSwitch, alTriplanar,
alJitterColor) and feedback on the library.

Jules Stevenson’s Kettle shaders [Ste] were, to our knowledge, the first example of open source Arnold
shader development and a great learning resource.

PBRT [PH10], by Matt Pharr and Greg Humphreys provides a never-ending resource for theory, as
well as code snippets for theiving.

References

[Bur12] Brent Burley. “Physically-based Shading at Disney”. In: 2012. url: http://disney-

animation.s3.amazonaws.com/library/s2012_pbs_disney_brdf_notes_v2.pdf.

[dMH13] Eugene d’Eon, Steve Marschner, and Johannes Hanika. “Importance Sampling for Physically-
based Hair Fiber Models”. In: SIGGRAPH Asia 2013 Technical Briefs. SA ’13. Hong Kong,
Hong Kong: ACM, 2013, 25:1–25:4. isbn: 978-1-4503-2629-2. doi: 10.1145/2542355.

2542386. url: http://doi.acm.org/10.1145/2542355.2542386.

[Dup+13] Jonathan Dupuy et al. “Linear Efficient Antialiased Displacement and Reflectance Map-
ping”. In: ACM Transactions on Graphics 32.6 (Nov. 2013), Article No. 211. doi: 10.
1145/2508363.2508422. url: http://hal.inria.fr/hal-00858220.

[FHK13] J. R. Frisvad, T. Hachisuka, and T. K. Kjeldsen. Directional Dipole for Subsurface Scat-
tering in Translucent Materials. Manuscript. Aug. 2013. url: http://www2.imm.dtu.dk/
pubdb/p.php?6646.

[HD14] Eric Heitz and Eugene D’Eon. “Importance Sampling Microfacet-Based BSDFs using the
Distribution of Visible Normals”. Anglais. In: Computer Graphics Forum (June 2014).
url: http://hal.inria.fr/hal-00996995.

[Jak+14] Wenzel Jakob et al. “A Comprehensive Framework for Rendering Layered Materials”.
In: ACM Transactions on Graphics (Proceedings of SIGGRAPH 2014) 33.4 (2014). url:
http://www.cs.cornell.edu/projects/layered-sg14/layered.pdf.

[Kin+13] Alan King et al. “BSSRDF importance sampling.” In: SIGGRAPH Talks. ACM, 2013,
p. 48. isbn: 978-1-4503-2344-4. url: https://www.solidangle.com/research/s2013_
bssrdf_slides.pdf.

[ON94] Michael Oren and Shree K. Nayar. “Generalization of Lambert’s Reflectance Model”. In:
Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Tech-
niques. SIGGRAPH ’94. New York, NY, USA: ACM, 1994, pp. 239–246. isbn: 0-89791-667-
0. doi: 10.1145/192161.192213. url: http://doi.acm.org/10.1145/192161.192213.

[Ou+12] Jiawei Ou et al. “ISHair: Importance Sampling for Hair Scattering”. In: ACM SIGGRAPH
2012 Talks. SIGGRAPH ’12. Los Angeles, California: ACM, 2012, 28:1–28:1. isbn: 978-
1-4503-1683-5. doi: 10.1145/2343045.2343084. url: http://doi.acm.org/10.1145/
2343045.2343084.

[PH10] Matt Pharr and Greg Humphreys. Physically Based Rendering, Second Edition: From The-
ory To Implementation. 2nd. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
2010. isbn: 0123750792, 9780123750792.

19



[SSK03] László Szécsi, László Szirmay-Kalos, and Csaba Kelemen. “Variance reduction for Russian-
roulette”. In: A. Slack, Solid State Physics 34 (2003), p. 2003. url: http://sirkan.iit.
bme.hu/~szirmay/c29.pdf.

[Ste] Jules Stevenson. Kettle Shaders. url: https://bitbucket.org/Kettle/kettle_uber/
wiki/Home.

[Vea98] Eric Veach. “Robust Monte Carlo Methods for Light Transport Simulation”. AAI9837162.
PhD thesis. Stanford, CA, USA, 1998. isbn: 0-591-90780-1.

[WW07] Andrea Weidlich and Alexander Wilkie. “Arbitrarily Layered Micro-Facet Surfaces”. In:
GRAPHITE 2007. Perth, Australia: ACM, Dec. 2007, pp. 171–178. isbn: 978-1-59593-912-
8. url: http://www.cg.tuwien.ac.at/research/publications/2007/weidlich_2007_
almfs/.

[Yan+14] Ling-Qi Yan et al. “Rendering Glints on High-resolution Normal-mapped Specular Sur-
faces”. In: ACM Trans. Graph. 33.4 (July 2014), 116:1–116:9. issn: 0730-0301. doi: 10.
1145/2601097.2601155. url: http://doi.acm.org/10.1145/2601097.2601155.

[Zin+08] Arno Zinke et al. “Dual Scattering Approximation for Fast Multiple Scattering in Hair”. In:
ACM Transactions on Graphics (Proceedings of SIGGRAPH 2008) 27.3 (2008), 32:1–32:10.
doi: 10.1145/1360612.1360631. url: http://doi.acm.org/10.1145/1360612.1360631.

20


