
layerlab: A computational toolbox for layered materials

by Wenzel Jakob

1 Introduction

A layered BSDF model describes the directional reflectance properties of a material whose internal
structure consists of a stack of scattering and/or absorbing layers separated by smooth or rough
interfaces. The bottom of the stack could be an opaque interface (such as a metal) or a transparent
one. Such structural decompositions into layers and interfaces dramatically enlarge the size of the
“language” that is available to describe materials, and for this reason they have been the focus of
considerable interest in computer graphics in the last few years [WW07; WW11; Jak+14a].

In this document, we present layerlab, a Python-based toolbox for computations involving layered
materials that implements a model recently proposed by Jakob et al. [Jak+14a]. The purpose of this
document is to serve both as a gentle introduction to the underlying theory and as a hands-on tutorial
on solving practical layering problems with this tool.

To follow the tutorial, download and compile the toolbox from GitHub:

$ git clone --recursive https://github.com/wjakob/layerlab
$ cd layerlab && cmake . && make -j 4

Next, launch Python and import the layerlab package.

>>> import layerlab as ll

We will also be using NumPy and matplotlib for visualizations.

>>> import numpy as np
>>> import matplotlib.pyplot as plt

The remainder is structured as follows: Section 2 motivates rendering of layered materials and
discusses the key components. Section 3 discusses background material from linear transport theory.
Section 4 introduces different “ingredient” layers that can be combined to build layered materials and
Section 5 shows how an initial 1D solution can be extended to produce a full BSDF model. Finally,
Section 6 covers practical considerations and showcases several experiments performed with layerlab.

2 Motivation

The most commonly used reflectance models in computer graphics describe the appearance of objects in
terms of metal or dielectric interfaces with microscopic roughness. Real objects are often considerably
more complex, with layers that might not fully hide the material below: glaze over ceramic, wall
paint over primer, colored car paint with a clear coat, enamel on gold and silver jewelry, and layered
biological structures such as leaves or skin.

Simulating these types of layered materials in renderings is surprisingly difficult: when a quantum
of light enters the top layer, it can undergo a complex sequence of scattering events within individual
layers and at layer boundaries; finally, the light is either absorbed or able to leave the material. The
details of this intermediate scattering process are important, since they determine both the intensity
and distribution of scattered light.

Most state-of-the-art rendering systems provide support for layered materials in some form, but
the underlying simulations either entirely neglect internal scattering or rely on crude approximations.
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Accurate models have been proposed for specific layer combinations, but it is important to realize that
we do not have accurate computational models for scattering from any systems more complex than a
single layer or a single interface. Even the simplest nontrivial system, of a single medium bounded by
a smooth interface, is only roughly approximated by standard BRDF models. While it is possible to
perform an accurate simulation of the random walk of light quanta individually using a brute force
Monte Carlo simulation (e.g. in a path tracer), this is rarely done in practice because it tends to
produce prohibitively high variance in renderings.

Recently, Jakob et al. [Jak+14a] proposed a model that supports general layered materials without
the aforementioned drawbacks. In this method, the response of the layer to incident illumination is
precomputed ahead of time and tabulated into a compact representation that can be queried and
importance sampled at render time. This involves several major components:

• A sparse angular representation for isotropic BRDFs

• Techniques for projecting a range of standard models into this representation

• An efficient way of merging the representation of two layers into a combined form that accounts
for all orders of internal scattering

• A correction to recover energy lost to multiple scattering in traditional microfacet models

We will go over each of these points and present experiments that demonstrate the capabilities of this
approach.

3 Background

Accounting for internal reflections in a stack of layers entails computing an integral over all possible
trajectories along which light could flow through the material; the proposed model builds on existing
tools from the radiative transport literature to solve this problem. In this section, we provide a brief
overview of relevant background material, starting with a historical perspective.

3.1 Glass plates theory

Some of the earliest theoretical work on layered materials was conducted by Stokes [Sto60], who
analyzed the combined reflection and transmission properties of a stack of glass plates. It will be
instructive to review the mathematics underlying the simplest case of his analysis involving only a
single plate.

Assuming geometric optics, unpolarized light and no absorption, the top interface of a glass plate
illuminated by a ray of unit power reflects a portion R of the incident light and transmits another
portion T into the material, where it goes on to encounter the bottom interface, reflecting back and
forth with a fraction escaping at each event:

...

In this case, R and T are given by the Fresnel equations. Due to reciprocity, the reflection and
transmission coefficients at the bottom interface are also equal to R and T .
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Suppose that we want to determine the total reflectance and transmittance of the plate as a whole.
To obtain these properties, we must sum over all light paths that eventually leave the plate, tracking
the intermediate scattering events to compute the path’s contribution to the sum.

Rtot = R+ TRT + . . . = R+ T 2
∞∑
i=0

R2i+1 = R+
RT 2

1−R2
,

Ttot = TT + TR2T + . . . = T 2
∞∑
i=0

R2i =
T 2

1−R2
. (1)

The resulting expressions are geometric series, which have a surprisingly simple explicit form. This
is convenient, since it allows us to directly quantify the optical properties of the combination of both
interfaces without having to sum over large numbers of internal scattering events.

3.2 Combining general layers

With this example in mind, let us move to a more general case. Rather than a smooth interface
illuminated from a single direction, consider a slab of arbitrary composition illuminated by a radiance
distribution expressed in some basis. (We leave the underlying discretization unspecified for now.) The
linearity of light transport then allows us to write the scattered illumination projected onto the same
basis using a matrix-vector product:

L↑(t) = RtL↓(t) + TbtL↑(b),

L↓(b) = RbL↑(b) + TtbL↓(t), (2)

where L↑(τ) and L↓(τ) are vectors describing the upwards and downwards radiance at depth τ with
respect to the basis. The depths t and b correspond to the top and bottom surface, and the square
matrices Rt,Rb and Ttb,Tbt describe the reflection and transmission for light arriving at the top and
bottom, respectively:

Multiplication by 

The analogous question to the glass plate example is: given the scattering matrices of two distinct
layers (i.e. Rt

1,R
t
2,T

tb
1 ,T

tb
2 , etc.), what are the scattering matrices of the two layers stacked together?

The solution is similar, but with the R and T matrices replacing the scalars R and T . As in the scalar
case, we sum over all possible sequences of reflections and transmissions, replacing geometric series
by their closed-form solutions. Attention must be paid to the ordering of multiplications, since the
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matrices generally do not commute. For a rigorous discussion of this derivation, we refer the reader to
[GH69]. The final result of this computation, analogous to (1), are the so-called adding equations:

R̃t = Rt
1 + Tbt

1 (I−Rt
2R

b
1)
−1Rt

2T
tb
1

R̃b = Rb
2 + Ttb

2 (I−Rb
1R

t
2)
−1Rb

1T
bt
2

T̃tb = Ttb
2 (I−Rb

1R
t
2)
−1Ttb

1

T̃bt = Tbt
1 (I−Rt

2R
b
1)
−1Tbt

2 (3)

Comparing Equations (1) and (3) reveals many similarities. For instance, the scalar inverse was
replaced by a matrix inverse, the constant one was replaced by an identity matrix, and so on.

The adding equations are a key ingredient of layerlab, since they permit accurate computation of
the scattering properties of stacks of layers that take all orders of internal scattering into account. Any
layer that is expressed in a suitable basis can be combined with other layers, and the same approach
even works for boundaries between layers that describe index of refraction changes.

To apply the adding equations in practice, we require a specific basis to tabulate the response of
layers to incident illumination. Furthermore, we must be able to project the reflectance functions of
layers and layer boundaries onto this basis. We discuss both aspects in turn.

3.3 Discretization

The directional response of a surface to illumination is characterized by the local illumination integral

Lo(θ, φ) = Le(θ, φ) +

∫ 2π

0

∫ π

0
f(θ, φ, θ′, φ′)Li(θ

′, φ′) |cos θ′| sin θ′ dθ′ dφ′, (4)

which relates the outgoing, emitted, and incident radiance (Lo, Le, and Li, respectively) via the BSDF
f . In the context of a layer located between depths τ ∈ [t, b], angles θ < π

2 correspond to illumination
on the top surface t, and angles θ > π

2 cover illumination on the bottom surface b.
In this section, we show how to convert Equation (4) into a set of matrices that are usable with

the adding equations (3). We will only consider non-emitting surfaces, hence Le = 0. To facilitate the
initial discussion, we will make a strong simplification and completely ignore the problem’s dependence
on azimuth angles φ. The simplified equation only involves a 1-dimensional integral over latitudes θ
and can be understood as describing light transport in 2D flatland.

Lo(θ) =

∫ π

0
f(θ, θ′)Li(θ

′) |cos θ′| sin θ′ dθ′ (5)

Instead of working with the latitude angles, it is generally more convenient and natural to integrate
over cosines of latitudes, which avoid the spatial distortion of spherical coordinates near the poles (this
removes the sin θ′ term).

Lo(µ) =

∫ 1

−1
f(µ, µ′)Li(µ

′) |µ′| dµ′ (6)

3.3.1 Computing integrals

To perform computer simulations, this equation must now be discretized in some manner. The dis-
cretization we’ll employ turns the integral into a weighted sum that evaluates all terms at discrete
locations {µ1, . . . , µn} ∈ [−1, 1]. The expression then reads

Lo(µ) =
n∑
j=1

f(µ, µj)Lj(µj)wj |µj |. (7)
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The way in which this discretization is done can have a fairly large impact on the accuracy of
integrals, particularly when the integrand is smooth. Let’s consider an artificial example where we
want to integrate a high-order polynomial over the interval [−1, 1].

>>> def integrand(x):
return 6.3 * (x**2 - x**6 - x**8)

Placement of 100 uniform and equal-weight samples leads to a poor approximation with almost 15%
relative error (the correct answer is 1.0).

>>> np.sum(integrand(np.linspace(-1, 1, 100)) * 1/50)

0.85891040658351925

Discretized integrals in linear transport theory frequently rely on Gaussian quadrature, where the
locations µi (referred to as discrete ordinates [Cha60]) and weights wi are chosen to yield an exact
result for polynomials up to a certain degree. Gauss-Lobatto points are one example, which include
the endpoints ±1 and maximize the order of exactly integrable polynomials subject to this constraint.

>>> mu, w = ll.quad.gaussLobatto(6)

>>> mu, w

(array([-1. , -0.76505532, -0.28523152, 0.28523152, 0.76505532, 1. ]),

array([ 0.06666667, 0.37847496, 0.55485838, 0.55485838, 0.37847496, 0.06666667]))

For the previous example, they can be seen to provide the correct answer up to rounding errors with
just 6 evaluation points.

>>> np.sum(integrand(mu) * w)

0.99999999999999989

Note that most commands in layerlab include extensive documentation—to obtain additional
information on their usage simply invoke help() at any point during the tutorial. The namespace
ll.quad, for instance, contains several additional quadrature techniques. Enter the following command
to see an overview:

>>> help(ll.quad)

Once the set of ordinates and weights are chosen, we can proceed to convert the local surface
integral (7) into a form that is suitable for use with the adding equations. For this, it will be convenient
to introduce some extra notation:

Li := (Li(µk))k ∈ Rn F := (f(µi, µj))ij ∈ Rn×n

Lo := (Lo(µk))k ∈ Rn W := (δijwi)ij ∈ Rn×n

M := (δij |µi|)ij ∈ Rn×n

where δij is the Kronecker delta. With these expressions, the fully discretized integral

Lo(µi) =

n∑
j=1

f(µi, µj)wj |µj |Lj(µj) (i = 1, . . . , n) (8)

can be written as a matrix expression
Lo = (FWM)Li (9)

The part in parentheses is the layer’s scattering matrix, which must still be separated into the four
blocks corresponding to reflection and transmission at the top and bottom interfaces, e.g.: Tbt Rt

Rb Ttb

 = FWM. (10)
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Note that the actual layout will depend on the chosen order of the latitude angle cosines µ1, . . . , µn.
The Layer class in layerlab provides an implementation of the discretization presented in this

section as well as functionality for filling the matrix entries with content. The next section documents
its usage in more detail.

4 Ingredient layers

layerlab supports a range of different “ingredient” layers that can be used to build more complex
layered structures. The simplest layer is a diffusely reflecting opaque slab.

4.1 Diffuse surfaces

The following snippet creates a diffuse layer with albedo 0.5, using Equation (10) to compute the
matrix entries from the definition of a diffuse BRDF.

>>> layer = ll.Layer(mu, w)

>>> layer.setDiffuse(0.5)

The four blocks of the layer’s scattering matrix can be queried via the fields layer[0].reflectionTop
and layer[0].reflectionBottom for the reflection case, plus layer[0].transmissionTopBottom and
layer[0].transmissionBottomTop for transmission.

>>> layer[0].reflectionTop

[ 0.1582631, 0.2895543, 0.06666667;

0.1582631, 0.2895543, 0.06666667;

0.1582631, 0.2895543, 0.06666667]

The reason for the brackets in the expression layer[0] will be explained shortly in Section 5.
We can also compute the amount of reflected light when the layer is illuminated with a distribution

of incident light in vector form, e.g. uniform illumination:

>>> Li = np.ones(3)

>>> np.dot(layer[0].reflectionTop, Li)

array([ 0.51448404, 0.51448404, 0.51448404])

The Li vector above has three entries matching the previously configured discretization with six ordi-
nates for both sides. The resulting integral still has about 3% relative error due to the extremely low
resolution.

The layer’s BSDF also can be queried directly using the Layer.eval(mu o, mu i) method. The
implementation of the latter function relies on cubic spline interpolation when it is invoked with
arbitrary ordinate values that lie between the µi locations of the discretization:

>>> layer.eval(0.12, -0.34) * np.pi

0.5

Note the sign flip in the arguments to the eval function. layerlab uses the convention that positive
µ values correspond to rays traveling deeper into the material, while negative values move towards the
top. When a reflection occurs we thus have µi · µo < 0. The above command performs a lookup into
the layer’s Rt block, which characterizes the reflection at the top interface.

4.2 Plotting layer scattering functions

The plot layer function in the following code snippet visualizes the contents of layer matrices. The
function calls a vectorized form of Layer.eval many times and draws the resulting sequence of plots
using Matplotlib’s imshow function. The meaning of the phi d argument can be ignored for now.
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Note that the plot function multiplies the BSDF values with two cosine factors—this is needed to
keep the results in a reasonable range for visualization (many BSDF models take on large values at
grazing angles).

>>> def plot_layer(layer, num_samples = 200, phi_d = 0):
fig = plt.figure(tight_layout = True)

titles = [ '$Tˆ{bt}$', '$Rˆ{t}$', '$Rˆ{b}$', '$Tˆ{tb}$' ]
for i in range(4):

# Plot extents for subplot

extent = [i%2-1, i%2, i//2-1, i//2]

# Initialize points where the layer is evaluated

mu_i = np.linspace(extent[0], extent[1], num_samples)

mu_o = np.linspace(extent[2], extent[3], num_samples)

mu_i_arg, mu_o_arg = np.meshgrid(mu_i, mu_o)

# Evaluate the layer scattering function

result = layer.eval(mu_o_arg, mu_i_arg, phi_d)

# Scale by cosine factors to plot scattered energy

result = np.array(result) * np.abs(mu_i_arg * mu_o_arg)

# Plot result

fig.add_subplot(2, 2, i + 1)

plt.title(titles[i])

plt.imshow(result, extent = extent, aspect = 'equal', origin='lower',
vmin = 0, vmax = np.percentile(result, 99))

plt.gca().invert_yaxis()

plt.colorbar()

plt.show()

We can immediately apply plot layer to the previously computed diffuse layer, which creates
zero-valued plots on the diagonal as there is no transmission.

plot_layer(layer)
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4.3 Microfacet layers

To model boundaries of dielectrics and conductors (i.e. metals), we use the microfacet model proposed
by Walter et al. [Wal+07]. Microfacet models describe the interaction of light with random surfaces
composed of microscopic dielectric or conducting facets that are oriented according to a microfacet
distribution. Integration over this distribution then leads to simple analytic expressions that describe
the expected reflection and transmission properties at a macroscopic scale.

The Layer.setMicrofacet() function initializes the layer with a microfacet BSDF for a given
index of refraction eta and Beckmann roughness coefficient alpha. We briefly postpone a discussion of
conserveEnergy and will explain the m parameter in Section 5. Note that since this layer’s scattering
function is considerably more detailed, we will require a higher number of ordinates.

>>> mu, w = ll.quad.gaussLobatto(200)

>>> m = 200

>>> dielectric = ll.Layer(mu, w, m)

>>> dielectric.setMicrofacet(eta = 1.5, alpha = 0.1, conserveEnergy = False)

>>> plot_layer(dielectric)
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The plots on the diagonal and off-diagonal illustrate the refractive and reflective behavior of the
material, respectively: refracted light is slightly blurred due to the material’s roughness, while reflected
light undergoes a much stronger directional blur. The refracted light changes direction according to
Snell’s law. The reflection at the bottom interface is fairly strong until the critical angle, at which
point it rapidly drops off.

The eta parameter of Layer.setMicrofacet() actually accepts arbitrary complex valued indices of
refraction. Calling the function with the imaginary value 0+1j creates a perfectly reflective conducting
layer without absorption:

>>> conductor = ll.Layer(mu, w, m)

>>> conductor.setMicrofacet(eta = 0+1j, alpha = 0.1, conserveEnergy = False)

>>> plot_layer(conductor)
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Having computed dielectric and conductive layers, we can now perform our first layering experiment:
the following call to Layer.addToTop() applies the adding equations (3) to the dielectric and
conductor variables, storing the combination in conductor. The resulting layer describes a metal
surface with a lacquer coating.

>>> conductor.addToTop(dielectric)

>>> plot_layer(conductor)
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The matrix visualization shows zero-valued diagonals: the result is opaque due to the conductive
input layer; the reflection at the bottom surface is also unchanged. The reflection at the top surface is
interesting: it shows features of both ingredient layers. The reflection from the conductor is additionally
blurred out since it must undego two refractions through the rough coating.
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4.4 Isotropic and anisotropic medium layers

Several different techniques exist that can be used to solve for the scattering matrices of medium layers.
The default in layerlab is the adding-doubling technique [Hul63].

Adding-doubling builds on the property that, as a function of optical depth, multiple scattering is
a higher-order effect. For sufficiently thin layers, the portion of multiply scattered illumination is so
minuscule that it can be neglected entirely. On the other hand, scattering matrices of layers with at
most a single scattering event are easily obtained, since they admit an analytic solution. The idea of
adding-doubling then is as follows: after computing the scattering matrices of a very thin layer (thin
enough that multiple scattering can be neglected, we use τ ≈ 10−15), the adding equations (3) are
used to find the scattering matrices of a layer twice the thickness, by joining two identical layers. The
layer is repeatedly doubled until it has the desired thickness.

Since τ increases exponentially during doubling operations, even very thick layers can be processed
rapidly. The snippet below instantiates three layers with a different Henyey-Greenstein anisotropy
parameter g and expands them to an optical depth of τ = 2.

>>> for x in [-0.9, 0, 0.9]:
>>> medium = ll.Layer(mu, w, m)

>>> medium.setHenyeyGreenstein(albedo = 0.95, g = x)

>>> medium.expand(2)

>>> plot_layer(medium)
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(c) g = 0.9
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An analogous routine setIsotropic() exists for the special case of g = 0. Looking at the plots,
we can see a set of high-valued diagonal entries, which correspond to attenuated light that has passed
straight through the layer without being scattered. The magnitude of the diagonal entries diminishes
towards µ = 0, since light at these angles must travel an increasingly long distance to pass through
the layer. For the g = 0.9 case, there is a faint, blurred transmission lobe around the diagonal, which
corresponds to forward-scattered light. There is also significant variation in the angular shape of the
reflection lobe between g = −0.9 and g = 0.9.

4.5 Measured layers

Finally, it is also possible to import measured materials into layerlab so that they can be composed
with other layers. This is currently implemented for BRDF data files from the database of Matusik et
al. [Mat+03].

>>> golden_paint = ll.Layer(mu, w, m)

>>> golden_paint.setMatusik(filename = "gold-metallic-paint.binary", channel = 0)

>>> plot_layer(golden_paint)
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5 Accounting for the azimuth dependence

In Section 3, we introduced the mathematical tools to apply the adding equations in a flatland setting
where the azimuthal dependence of the problem could be fully neglected. This is of course a severe
approximation—in general, we will need to account for azimuth to obtain meaningful results. Unfor-
tunately, reintroducing φ and φ′ will increase the dimensionality of the BSDF from 2D to 4D, which
greatly reduces the practicality of the tools introduced thus far since the discretizations will generally
be too large to keep in memory.
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We therefore restrict our analysis to surfaces that are isotropic in the sense of invariance with
rotation around the normal (a), and add the further reasonable assumption of bilateral symmetry (b):

(a) Isotropy (b) Bilateral symmetry

Together these imply that the BSDF of a layer is a three-dimensional function that depends on µ, µ′,
and the azimuth angle difference φd = |φ− φ′|. This reduction in dimension certainly helps, but even
a 3D layering problem will be challenging to solve using the discretization approach discussed so far.

5.1 Transitioning to frequency space

To address this issue, we expand all functions that depend on azimuth or azimuth difference in an even
real-valued Fourier basis. In other words, a function g(φ) is now written as

g(φ) =
∞∑
l=0

gl cos(l(φ− φ′)), (11)

where gl (l = 0, . . . ,∞) are the Fourier coefficients corresponding to different azimuthal oscillation
modes. When starting from a smooth function g, the coefficients can be obtained using the following
projection operator:

gl = Fl[g] =
2− δ0l
π

∫ π

0
g(φ) cos(lφ)dφ. (12)

Applying this projection operator to the incident and outgoing radiance function and the BSDF pro-
duces a set of coefficients that we will refer to as Lo,l, Li,l, and fl, respectively.

From a high level, it is not directly clear how this has made the problem any easier. However,
consider what happens when we project the full local illumination integral onto this Fourier basis (see
[Jak+14b] for a detailed derivation):

Fl
[
Lo(µ, φ)

]
= Fl

[ ∫ 2π

0

∫ 1

−1
f(µ, µ′, φ− φ′)Li(µ′, φ′) |µ′|dµ′ dφ′

]
(13)

⇔ Lo,l(µ) = π(1 + δ0l)

∫ 1

−1
fl(µ

′, µ)Li,l(µ
′) |µ′| dµ′ (l = 0, . . . ,∞) (14)

The crucial aspect to note about Equation (14) is that the dependence on µ and φ decouples. We’re
left with an infinite sequence of 2D flatland problems that only involve the µ variable. These are
equivalent1 to the types of simplified azimuth-independent problems that were solved in the previous
section. However, the ingredients that go into these equations are not generally physically meaningful
anymore. For instance, the equation with l = 1 describes the layer’s response to incident light, which is
positive at φ = 0 and negative at φ = π. If we just ignore this, solve the individual equations as usual
and put the results back together in the form of Equation (11), we obtain a solution for the full problem
that correctly accounts for azimuthal variation. This approach was pioneered in Chandrasekhar’s study
of stratified media [Cha60].

1Up to some minor constant factors.
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At this point, we have reduced the original 4D integration problem first to 3D and then to an
infinite sequence of much simpler 2D integration sub-problems. Of course, only a finite number of
sub-problems can be considered in practice.

The magnitude of the Fourier modes fl decreases so that a good approximation can be obtained
by truncating the set of equations after some maximum index l < m. However, when the mate-
rial’s reflectance function includes sharp peaks (e.g. due to specular reflection), this constant m can
unfortunately be a very large number (e.g. several thousands of 2D sub-problems).

The important question is thus: is it practical to solve a very large number of sub-problems, or
would we have been off easier with the original 3D problem? This is where sparsity comes into play.

5.2 Making use of sparsity

We make the following important observations:

1. To represent very peaked reflectance functions, we require many Fourier coefficients, but this
is only the case for a small set of elevation pairs (µ, µ′). For instance, in the case of specular
reflection, the expansions have high frequencies only when µ ≈ µ′ and low frequencies or even
zeroes elsewhere.

2. Smoother reflectance functions are nonzero over many pairs (µ, µ′), but they are low frequency
in the azimuth difference angle φ− φ′, and thus their Fourier series decay rapidly.

Scattering matrices of high frequency materials expressed in Chandrasekhar’s directional basis are
sparse. layerlab therefore relies on sparse linear algebra techniques, allowing it to go to very high
orders to represent even mirror-like materials without ringing or other artifacts (Figure 2), while
generating BSDF representations that require comparably little storage.

This also explains the indexing notation used to access layer[0].reflectionTop in Section 4.
This command returns the zeroth Fourier mode, which describes the response to light that is uni-
form in azimuth. The 2D subproblem for each oscillation mode is completely independent from the
others: when we invoked the addToTop() command to apply the adding equations, a sparse-aware
implementation was executed 200 times in parallel for each one of them.

Figure 2: Frequency-based representations are usually impractical when trying to represent specular materials like this
chrome object with Beckmann roughness α = 0.01. This BSDF was projected into a basis with m = 9763 Fourier series
terms and n = 503 discretizations in µi and µo, which would normally produce about 28 GiB of dense coefficient data.
By exploiting sparsity, only 51.3 MiB of coefficients (0.19%) are required. Computing the discretization took 9.6 seconds;
rendering took another 1.4 minutes.
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Much of the technical contribution of this toolbox revolves around the efficient computation of
Fourier projections of common models without having to perform a costly sequence of integrals of
the form in Equation (12). For example, the Layer.setMicrofacet() function encountered before
issues many calls to a helper function microfacetFourierSeries(), which relies on a fast recurrence
relation to compute series coefficients for a microfacet reflectance model (see [Jak+14b] for details):

>>> coeffs = ll.microfacetFourierSeries(mu_o = -0.5, mu_i = 0.5, eta = 1.5, alpha = 0.3,

n = 50, relerr = 1e-5)

>>> np.array(coeffs)

array([ 3.82335157e-01, 7.36943424e-01, 6.59711216e-01,

5.48716585e-01, 4.24219739e-01, 3.04993551e-01,

2.04012100e-01, 1.27013796e-01, 7.36102434e-02,

3.97010664e-02, 1.99084441e-02, 9.26369707e-03,

3.98439027e-03, 1.57507016e-03, 5.62955372e-04,

1.79824161e-04, 4.91424467e-05, 7.70838099e-06])

The resulting frequency space representation can be compared against the reference model implemented
in microfacet():

>>> phi_d = np.linspace(0, np.pi, 100)

>>> reference = ll.microfacet(mu_o = -0.5, mu_i = 0.5, eta = 1.5, alpha = 0.3,

phi_d = phi_d)

>>> approximate = ll.fourier.evalFourier(coeffs, phi_d)

>>> plt.plot(phi_d, approximate, 'b')
>>> plt.plot(phi_d, reference, 'r', lw = 2, ls = 'dashed')
>>> plt.show()
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6 Miscellaneous topics and experiments

In the remainder of the document, we show additional experiments and touch on some topics of
practical relevance.

6.1 Validation against van de Hulst reference data

In his two-volume treatise on multiple scattering, van de Hulst [Hul80] provides a rich set of reference
data for multiple scattering in isotropic and anisotropic slabs over a range of different parameters.

This is a useful source of information to assess the accuracy of our implementation. For instance,
consider the highlighted row of Table 12 in Volume 1, which quantifies the reflectivity of an isotropic
slab of optical depth τ = 2 with an albedo of 0.9 and incident illumination arriving from µ = 0.9.
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We define the following function that evaluates a given layer structure and compares against Table 12.

>>> def compare_against_vandehulst(l):
ref = [ 0.43124, 0.45143, 0.43807, 0.40866, 0.37554, 0.34382, 0.32910]

ref_mu = [0.0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0]

for i in range(len(ref_mu)):
result = l.eval(0.9, -ref_mu[i]) * np.pi

print('mu_i = %.1f: van de Hulst = %.5f, computed = %.5f (rel. error = %.2e)'
% (ref_mu[i], ref[i], result, np.abs(result-ref[i]) / ref[i]))

Now, we can recreate the same type of layer in layerlab and launch the comparison.

>>> mu, w = ll.quad.compositeSimpson38(10)

>>> layer = ll.Layer(mu, w)

>>> layer.setIsotropic(0.9)

>>> layer.expand(2)

>>> compare_against_vandehulst(layer)

mu_i = 0.0: van de Hulst = 0.43124, computed = 0.46310 (rel. error = 7.39e-02)

mu_i = 0.1: van de Hulst = 0.45143, computed = 0.45227 (rel. error = 1.87e-03)

mu_i = 0.3: van de Hulst = 0.43807, computed = 0.43807 (rel. error = 3.05e-07)

mu_i = 0.5: van de Hulst = 0.40866, computed = 0.40943 (rel. error = 1.87e-03)

mu_i = 0.7: van de Hulst = 0.37554, computed = 0.37624 (rel. error = 1.86e-03)

mu_i = 0.9: van de Hulst = 0.34382, computed = 0.34467 (rel. error = 2.47e-03)

mu_i = 1.0: van de Hulst = 0.32910, computed = 0.32957 (rel. error = 1.42e-03)

A finer discretization leads to extremely accurate results except for µ = 0, i.e. light traveling parallel
to the surface, where the order of convergence is lower.

>>> mu, w = ll.quad.compositeSimpson38(64)

>>> layer = ll.Layer(mu, w)

>>> layer.setIsotropic(0.9)

>>> layer.expand(2)

>>> compare_against_vandehulst(layer)

mu_i = 0.0: van de Hulst = 0.43124, computed = 0.43661 (rel. error = 1.24e-02)

mu_i = 0.1: van de Hulst = 0.45143, computed = 0.45143 (rel. error = 8.48e-06)

mu_i = 0.3: van de Hulst = 0.43807, computed = 0.43807 (rel. error = 3.03e-06)

mu_i = 0.5: van de Hulst = 0.40866, computed = 0.40866 (rel. error = 2.84e-06)

mu_i = 0.7: van de Hulst = 0.37554, computed = 0.37555 (rel. error = 1.81e-05)

mu_i = 0.9: van de Hulst = 0.34382, computed = 0.34382 (rel. error = 1.42e-06)

mu_i = 1.0: van de Hulst = 0.32910, computed = 0.32910 (rel. error = 8.30e-07)
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(a) α = 0.01 (b) α = 0.04 (c) α = 0.14 (d) α = 0.53 (e) α = 2

(f) α = 0.01 (g) α = 0.04 (h) α = 0.14 (i) α = 0.53 (j) α = 2

(k) α = 0.01 (l) α = 0.04 (m) α = 0.14 (n) α = 0.53 (o) α = 2

(p) α = 0.01 (q) α = 0.04 (r) α = 0.14 (s) α = 0.53 (t) α = 2

Figure 3: Traditional microfacet models for dielectrics and conductors (rows 1 and 3) suffer from energy loss that is
particularly problematic in simulations of layered materials. The proposed model adds a multiple scattering term that
reintroduces this energy (rows 2 and 4).

6.2 Energy loss

One issue with currently used microfacet models is that they only account for a single scattering
event at the microgeometry level; light that interacts with multiple facets is effectively ignored. These
models thus incur an energy loss that grows steadily as the roughness of the interface is increased. In
a simulation of layered materials with multiple rough internal boundaries, this loss is incurred many
times due to interactions between layers, potentially removing significant amounts of energy.
layerlab can optionally apply an additive correction term to the microfacet model, which rein-

troduces any energy lost to multiple scattering. This term is approximate—in particular, it assumes
that, following multiple interactions within the surface microgeometry, the scattered radiation emerges
with an angular distribution that is close to diffuse. Figure 3 illustrates the visual effects of setting
conserveEnergy=True when the roughness parameter alpha is set to a high value.

6.3 Exploring the space of multi-layered appearance models

Figures 4 and 5 show rendered results of layering experiments performed with layerlab. In Figure 4,
a gold base layer was coated with a dielectric with an index of refraction of η = 1.5. The sequence of
renderings shows the effects of varying the roughness of the two layers independently. Changing the
roughness of the bottom layer generally has a stronger effect on the overall appearance, since the effect
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Figure 4: A gold dragon coated with a lacquer layer (both with varying roughness). The small insets show the ingredient
layers rendered on their own. Top left: smooth base and smooth coating. Top right: smooth base and rough coating.
Bottom left: rough base and smooth coating. Bottom right: rough base and rough coating.

Figure 5: A shiny gold dragon with a layer of dust. Top left: thin layer of isotropic dust. Top right: thin layer of
anisotropic dust. Bottom left: thick layer of isotropic dust. Bottom right: thick layer of anisotropic dust.
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of this change is directionally magnified through the refractive coating.
In Figure 5, a dust layer of varying thickness and scattering anisotropy was applied to a shiny gold

base; its anisotropy was modeled using the Henyey-Greenstein phase function. When the layer is thick
and isotropic, little light reaches the bottom, hence the gold base is essentially invisible. When g = 0.9,
the gold base becomes visible, as light can travel farther in a highly forward-scattering medium. When
the layer is thin, it is interesting to note that the anisotropic medium blurs out the reflection from the
gold base, while the reflection is merely attenuated in the isotropic case.

6.4 Spectral/RGB variation

Note that the Layer class is purely monochromatic and has no special support for RGB or spectral
data. This is intentional—layering computations must be performed separately for each wavelength
or color channel; the final set of reflectance data can then be exported to a RGB or spectrum-based
rendering system.

When simulating colored metals such as gold or copper that will ultimately be exported into
a RGB-based rendering one simple trick to get fairly good approximations entails convolving the
complex-valued spectrally varying index of refraction with the CIE color matching curves and convert-
ing resulting XYZ values to linear RGB. The following values were obtained in this way for gold.

>>> layers = []

>>> for eta in [0.143552 + 3.98397j, 0.377438 + 2.38495j, 1.43825 + 1.60434j]:
>>> l = ll.Layer(mu, w, 500)

>>> l.setMicrofacet(eta = eta, alpha = 0.1)

>>> # ... apply other modifications to 'l' (e.g. a coating) ...
>>> layers.append(l)

6.5 Exporting BSDF data to rendering software

Finally, the BSDFStorage.fromLayer() or BSDFStorage.fromLayerRGB() functions can be used to
export a .bsdf file that can be used with PBRT version 3 [PHJ16] and the Mitsuba renderer [Jak10].

>>> storage = ll.BSDFStorage.fromLayerRGB("gold.bsdf", layers[0], layers[1], layers[2])

Log: BSDFStorage::fromLayerGeneral(): merging 3 layers into "gold.bsdf" - analyzing sparsity

pattern..

Log: Done. Number of coeff: 734778 / 13824000, sparsity=5.32%

Log: Creating sparse BSDF storage file "gold.bsdf":

Log: Discretizations in mu : 96

Log: Max. Fourier orders : 500

Log: Color channels : 3

Log: Textured parameters : 0

Log: Basis functions : 1

Log: Uncompressed size : 52.8 MiB

Log: Actual size : 2.9 MiB (reduced to 5.50%)

Trace: Creating memory-mapped file "gold.bsdf" (2.9 MiB)..

Log: Copying data into sparse BSDF file ..

Log: Computing cumulative distributions for importance sampling ..

Log: BSDFStorage::fromLayerGeneral(): Done.

>>> storage.close()

Trace: Unmapping "gold.bsdf" from memory
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