layerlab: A computational toolbox for layered materials

Wenzel Jakob

ETH Zürich

Outline

- What is layerlab?
- Benefits of layered material models
- Layers in flatland
- Combining layers
- Layers in 3D
- Experiments

A rich language for describing surface appearance

Grammar:

- Combining layers
- Expanding layers to a certain depth

A rich language for describing surface appearance

Grammar:

- Combining layers
- Expanding layers to a certain depth

Words:

- Diffuse layers
- Conductors
- Dielectrics
- Participating media
- Measured BRDFs

A Comprehensive Framework for Rendering Layered Materials

Wenzel JakobEugene D'EonOtto JakobSteve MarschnerETH ZürichWeta DigitalAtelier Otto JakobCornell University

$\alpha = 0.1$ Blue isotropic scattering dielectric ($\eta = 1.5$) $\alpha = 0.1$ Conductor (copper)
$\alpha = 0.05$ Clear dielectric ($\eta = 1.5$) Textured diffuse layer
Thin blue absorbing dielectric ($\eta = 1.5$) Purple anisotropic scattering diel. ($\eta = 1.5, g=0.8$) $\alpha = 0.1$
$\alpha = 0.02$ Conductor (chrome)
Slightly absorbing blue-green dielectric ($\eta = 1.5$) $\alpha = 0.05$

Code available at: https://github.com/wjakob/layerlab (linked in course notes)

			۰.
٦	Δ	C	۱
4	c	0	,
,			,

		A	Pyth
one	*		

In [3]: help(ll.quad)

Help on module layerlab.quad in layerlab:

NAME

layerlab.quad - Functions for numerical quadrature

FUNCTIONS

compositeSimpson(...) method of builtins.PyCapsule instance Signature : (int32_t) -> (array, array)

Computes the nodes and weights of a composite Simpson quadrature rule with the given number of evaluations.

Integration is over the interval \$[-1, 1]\$, which will be split into \$(n-1) / 2\$ sub-intervals with overlapping endpoints. A 3-point Simpson rule is applied per interval, which is exact for polynomials of degree three or less.

Parameter ``n``: Desired number of evalution points. Must be an odd number bigger than 3.

Parameter ``nodes``: Length-``n`` array used to store the nodes of the quadrature rule

Parameter ``nodes``: Length-``n`` array used to store the weights of the quadrature rule

Remark:

In the Python API, the ``nodes`` and ``weights`` field are returned as a tuple

compositeSimpson38(...) method of builtins.PyCapsule instance Signature : (int32_t) -> (array, array)

Computes the nodes and weights of a composite Simpson 3/8 quadrature rule with the given number of evaluations.

$L_{o}(\omega) = \int_{\mathcal{S}} f_{s}(\omega, \omega') L_{i}(\omega') |n \cdot \omega'| d\omega'$

outgoing **BSDF** radiance $L_0(\omega) = \int_{\mathcal{S}} f_s(\omega, \omega') L_i(\omega') |n \cdot \omega'| \,\mathrm{d}\omega'$

incident cosine radiance factor

outgoing radiance

BSDF

incident radiance

cosine factor

 $L_0(\omega) = \int_{\mathcal{S}} f_s(\omega, \omega') L_i(\omega') |n \cdot \omega'| \,\mathrm{d}\omega'$

outgoing radiance

BSDF

incident radiance

cosine factor

 $L_0(\omega) = \int_{\mathcal{S}} f_s(\omega, \omega') L_i(\omega') |n \cdot \omega'| \,\mathrm{d}\omega'$

Write in spherical coordinates

$L_0(\theta,\phi) = \int_0^{2\pi} \int_0^{\pi} f_s(\theta,\phi,\theta',\phi')$ $L_i(\theta',\phi') |\cos \theta'| \sin \theta' d\theta' d\phi'$

outgoing radiance

BSDF

incident radiance

cosine factor

 $L_0(\omega) = \int_{\mathcal{S}} f_s(\omega, \omega') L_i(\omega') |n \cdot \omega'| \, \mathrm{d}\omega'$

Write in spherical coordinates

$L_0(\theta,\phi) = \int_0^{2\pi} \int_0^{\pi} f_s(\theta,\phi,\theta',\phi')$ $L_i(\theta',\phi') |\cos \theta'| |\sin \theta' d\theta' d\phi'$

 $L_0(\theta,\phi) = \int_0^{2\pi} \int_0^{\pi} f_s(\theta,\phi,\theta',\phi')$

$L_i(\theta', \phi') |\cos \theta'| \sin \theta' d\theta' d\phi'$

 $L_{o}(\theta) = \int_{0}^{\pi} f_{s}(\theta, \theta') L_{i}(\theta') |\cos \theta'| \sin \theta' d\theta'$

$L_o(\theta,\phi) = \int_0^{2\pi} \int_0^{\pi} f_s(\theta,\phi,\theta',\phi')$

$L_i(\theta',\phi') |\cos \theta'| \sin \theta' d\theta' d\phi'$

Get rid of ϕ

$L_o(\theta) = \int_0^{\pi} f_s(\theta, \theta') L_i(\theta') |\cos \theta'| \sin \theta' d\theta'$

$L_{o}(\theta) = \int_{0}^{\pi} f_{s}(\theta, \theta') L_{i}(\theta') |\cos \theta'| \sin \theta' d\theta'$

Switch to $\mu = \cos \theta$

 $L_{o}(\mu) = \int_{-1}^{1} f_{s}(\mu, \mu') L_{i}(\mu') |\mu'| d\mu'$

The local illumination integral (flatland) $L_{o}(\mu) = \int_{-1}^{1} f_{s}(\mu, \mu') L_{i}(\mu') |\mu'| d\mu'$ Discretize for μ_1, \ldots, μ_n $L_o(\mu_j) = \sum_{i=1}^n f_s(\mu_j, \mu_i) |\mu_i| w_i L_i(\mu_i)$

The local illumination integral (flatland) $L_{o}(\mu) = \int_{-1}^{1} f_{s}(\mu, \mu') L_{i}(\mu') |\mu'| d\mu'$ Discretize for μ_1, \dots, μ_n $L_o(\mu_j) = \sum_{i=1}^n f_s(\mu_j, \mu_i) |\mu_i| w_i L_i(\mu_i)$ Write using matrix notation i=1 $\mathbf{L}_0 = \mathbf{F}_S \mathbf{L}_i$

$L_0 = F_S L_i$

$rightarrow F_{S}L_{1}$ "Scattering matrix"

In [3]:	mu, w = : mu, w	ll.quad.gaus	sLobatto(10)		
Out[3]:	(array([-	-1. ,	-0.91953391,	-0.73877387,	-0.4
		0.16527896,	0.47792495,	0.73877387,	0.9
	array([0.02222222,	0.13330599,	0.22488934,	0.2
		0.32753976,	0.29204268,	0.22488934,	0.1

47792495, -0.16527896, 91953391, 1.]), 29204268, 0.32753976, 13330599, 0.02222222]))

In [3]:	<pre>mu, w = ll.quad.gaussLobatto(10) mu, w</pre>
Out[3]:	<pre>(array([-1. , -0.91953391, -0.73877387, -0. 0.16527896, 0.47792495, 0.73877387, 0. array([0.02222222, 0.13330599, 0.22488934, 0. 0.32753976, 0.29204268, 0.22488934, 0.</pre>
In [4]:	<pre>def plot_layer(layer, num_samples = 200, phi_d = 0 fig = plt.figure(tight_layout = True) titles = ['\$T^{bt}\$', '\$R^{t}\$', '\$R^{b}\$', ' for i in range(4): # Plot extents for subplot extent = [i%2-1, i%2, i//2-1, i//2] # Initialize points where the layer is eva mu_i = np.linspace(extent[0], extent[1], n mu_o = np.linspace(extent[2], extent[3], n mu_i_arg, mu_o_arg = np.meshgrid(mu_i, mu_ # Evaluate the layer scattering function result = layer.eval(mu_o_arg, mu_i_arg, ph # Scale by cosine factors to plot scattere result = np.array(result) * np.abs(mu_i_ar # Plot result fig.add_subplot(2, 2, i + 1) plt.title(titles[i]) plt.imshow(result, extent = extent, aspect</pre>

47792495, -0.16527896, 91953391, 1.]), 29204268, 0.32753976, 13330599, 0.02222222]))

):

\$T^{tb}\$']

luated

um_samples) um_samples) o)

ni_d) ed energy rg * mu_o_arg)

```
x = 'equal', origin='lower',
result, 99))
```


In [5]: layer = ll.Layer(mu, w) layer.setDiffuse(albedo = 0.5)

plot_layer(layer)

In [5]:

layer = ll.Layer(mu, w)
layer.setDiffuse(albedo = 0.5)

plot_layer(layer)

In [6]: mu, w = ll.quad.gaussLobatto(200) dielectric = ll.Layer(mu, w, 200) plot_layer(dielectric)

```
dielectric.setMicrofacet(eta = 1.5, alpha = 0.1)
```

In [6]: mu, w = ll.quad.gaussLobatto(200) dielectric = ll.Layer(mu, w, 200) plot_layer(dielectric)


```
dielectric.setMicrofacet(eta = 1.5, alpha = 0.1)
```


7.2 6.4 5.6 4.8 4.0 3.2 2.4 1.6 0.8 0.0

0.10 0.08 0.06 0.04 0.02 0.00 -0.02-0.04-0.06-0.08-0.10

Outline

- What is layerlab?
- Benefits of layered material models
- Layers in flatland
- Combining layers
- Layers in 3D
- Experiments
Air

Glass

Air

Glass

Air

Glass

Glass

$T_{\text{tot}} = TT + TR^2T + \dots = T^2 \sum_{i=0} R^{2i}$

 \mathbf{R}_1^t , \mathbf{R}_1^b , \mathbf{T}_1^{tb} , \mathbf{T}_1^{bt}

 $\mathbf{R}_2^t, \mathbf{R}_2^b, \mathbf{T}_2^{tb}, \mathbf{T}_2^{bt}$

 $\mathbf{R}_{1}^{t}, \mathbf{R}_{1}^{b}, \mathbf{T}_{1}^{tb}, \mathbf{T}_{1}^{bt}$ $\mathbf{R}_{2}^{t}, \mathbf{R}_{2}^{b}, \mathbf{T}_{2}^{tb}, \mathbf{T}_{2}^{bt}$

 $\tilde{\mathbf{R}}^t = \mathbf{R}_1^t + \mathbf{T}_1^{bt} (\mathbf{I} - \mathbf{R}_2^t \mathbf{R}_1^b)^{-1} \mathbf{R}_2^t \mathbf{T}_1^{tb}$ $\tilde{\mathbf{R}}^b = \mathbf{R}_2^b + \mathbf{T}_2^{tb} (\mathbf{I} - \mathbf{R}_1^b \mathbf{R}_2^t)^{-1} \mathbf{R}_1^b \mathbf{T}_2^{bt}$ $\tilde{\mathbf{T}}^{tb} = \mathbf{T}_2^{tb} (\mathbf{I} - \mathbf{R}_1^b \mathbf{R}_2^t)^{-1} \mathbf{T}_1^{tb}$ $\tilde{\mathbf{T}}^{bt} = \mathbf{T}_1^{bt} (\mathbf{I} - \mathbf{R}_2^t \mathbf{R}_1^b)^{-1} \mathbf{T}_2^{bt}$

[Grant and Hunt 1969]

 \mathbf{R}_{1}^{t} , \mathbf{R}_{1}^{b} , \mathbf{T}_{1}^{tb} , \mathbf{T}_{1}^{bt} $\mathbf{R}_{2}^{t}, \mathbf{R}_{2}^{b}, \mathbf{T}_{2}^{tb}, \mathbf{T}_{2}^{bt}$

 RT^2 $-R^2$ $\tilde{\mathbf{R}}^{t} = \mathbf{R}_{1}^{t} + \mathbf{T}_{1}^{bt}(\mathbf{I} - \mathbf{R}_{2}^{t}\mathbf{R}_{1}^{b})^{-1}\mathbf{R}_{2}^{t}\mathbf{T}_{1}^{tb}$ $\tilde{\mathbf{R}}^{b} = \mathbf{R}_{2}^{b} + \mathbf{T}_{2}^{tb}(\mathbf{I} - \mathbf{R}_{1}^{b}\mathbf{R}_{2}^{t})^{-1}\mathbf{R}_{1}^{b}\mathbf{T}_{2}^{bt}$ $\tilde{\mathbf{T}}^{tb} = \mathbf{T}_2^{tb} (\mathbf{I} - \mathbf{R}_1^b \mathbf{R}_2^t)^{-1} \mathbf{T}_1^{tb}$ T^2 $\tilde{\mathbf{T}}^{bt} = \mathbf{T}_1^{bt} (\mathbf{I} - \mathbf{R}_2^t \mathbf{R}_1^b)^{-1} \mathbf{T}_2^{bt}$ $-R^2$

[Grant and Hunt 1969]

Combining layers

In [8]:

conductor.addToTop(dielectric)
plot_layer(conductor)

Combining layers

In [8]:

conductor.addToTop(dielectric) plot_layer(conductor)

0.08 0.06 0.04 0.02 0.00 -0.02-0.04-0.06-0.08-0.10

Combining layers

In [8]:

conductor.addToTop(dielectric) plot_layer(conductor)

0.08 0.06 0.04 0.02 0.00 -0.02-0.04-0.06-0.08-0.10

Layers in 3D (with azimuth!)

Layers in 3D (with azimuth!)

Layers in 3D (with azimuth!)

$-\Gamma(l) - (l)_{l}$

Sparse matrix representation

 θ_0

Sparse matrix representation

Writing parameters to disk

```
In [9]: ll.BSDFStorage.fromLayer("output.bsdf", layer)
Out[9]: BSDFStorage[
          mmap = MemoryMappedFile[filename="output.bsdf", size=3.3 MiB],
          nNodes = 202,
          nMaxOrder = 200,
          nChannels = 1,
          nBases = 1,
          eta = 1
```

Output can be rendered with Mitsuba and PBRT version 3 code @ <u>https://github.com/mmp/pbrt-v3</u>

Outline

- What is layerlab?
- Benefits of layered material models
- Layers in flatland
- Combining layers
- Layers in 3D
- Experiments

Interaction of rough boundaries

- Stanford dragon with two layers
 - 1. Rough dielectric interface
 - 2. Rough gold interface

Matrix resolution $n \in [55, 1097]$

Fourier orders $m \in [92, 4194]$

Varying top layer, bottom layer smooth

Wednesday, August 12, 15

Varying bottom layer, top layer smooth

Wednesday, August 12, 15

Scattering dust on metal

- Stanford dragon with two layers
 - 1. Index-matched scattering layer
 - 2. Rough gold interface

n = 4194Matrix resolution

Fourier orders m = 4194

Varying layer anisotropy

τ=4.000, g=0.900

Wednesday, August 12, 15

Varying layer width (isotropic)

τ=4.000, g=0.000

Wednesday, August 12, 15

mm and the second secon

Multiple scattering term for dielectrics

Standard microfacet model

Energy conserving model

 $(\alpha = 0.01, ..., 2)$

Multiple scattering term for conductors

Standard microfacet model

Energy conserving model

 $(\alpha = 0.01, ..., 2)$

Summary

- Realistic toolkit for simulating layered materials
- Extremely accurate (see course notes)
- No existing rendering software does this today :(
- Remaining challenges: texturing multiple parameters.