Advanced Lighting R&D at Ready At Dawn Studios
David Neubelt - Ready At Dawn Studios

Matt Pettineo — Ready At Dawn Studios

Physically-Based Shading in Theory and Practice 2015

This screen shot is one of the best examples of our baked Gl technique because it
shows complicated lighting across a range of materials and it uses no runtime
lighting. Everything is based off our baked Gl solution.

Baked Global Illumination

|

Us“‘rr'

» High quality static GI
» Baked environments
= Baked character lighting
» Diffuse and specular

The Order: 1886 is a linear game with medium size levels both inside and outside.
The game was fairly static in it’s lighting so it made the most sense for our project to
use a statically baked Gl solution.

It was important for us to not only capture diffuse lighting but also capture specular
Gl as well. One of the many reasons we pushed so hard on the baked specular was
the limitations we hit using cubemaps (spatially getting wrong reflections in the
wrong places and the angular quality).

Tried Many Solutions

Baked AO

SG (5,6,9,12 ; : :
() Directional Diffuse
SH (4, 9)

Directional AO RGB Diffuse

Perspective Correct Cubemaps
H-Basis4/6
H-basis AO

=
READY AT !)“\M"NEG

We tried many techniques during the development and each of them didn’t really fit
our needs exactly. Some techniques even stayed into the shipping product like the H-
basis AO for specular and diffuse occlusion for prop objects.

However, what we ended up using was Spherical Gaussians and we’ll quickly go into
why we made that decision.

Spherical Harmonics Diffuse

= Good for: low frequency signals
high intensity, directional lighting

Dynamic light Projected onto SH9
=
READY AT DA M"N.rE

Note: You can apply a windowing function to reduce ringing at the cost of blurring
the signal.

HDR lighting can cause certain lobes to be very large negative numbers to cancel out
the high positive coefficients. Bad for quality and bad for compression.

Spherical Harmonics Ringing

Dynamic Light
i

READY AT DA W’N.rE

Ringing showed up in our game when we baked the direct lights to save on lighting
costs. This caused our characters to have a dead/zombie look. The ringing caused the
lighting to overshoot, e.g. on his forehead, and go negative on the opposite side of

the lighting.

Spherical Harmonics Specular

» Lots of coefficients for high frequency data

» Expensive to evaluate
» Texture lookup
= SH Rotation
» Evaluation

=
READY AT !)“\M"NEG

We tried spherical harmonics specular that Bungie had implemented. It was a little
too expensive because of the combination of the lookup, sh rotation, and brdf
evaluation.

Spherical Harmonics Specular

= SH9 |looks matte:

Path Tracer
-~

READY AT DA M"N.rE

It also had a matte look with only 9 coefficients. It might have been good enough with
16 coefficients but the cost certainly would have been too expensive at that point.

Cubemap Specular

» Non-localized sampling artifacts

Cubemap Path Tracer

=
READY AT D r‘\\\"N.EE

=Matches lighting signal and BRDF more closely
=Non-localized

=Implemented AABB perspective warping

=Still not perfect and hard to author for non-square rooms
=Causes glowing edges

=Lack of occlusion

Cubemap Specular

» Localization and occlusion problems

.

Cubemap Path Tracer

1
READY AT DA WNJE

The screenshot on the left was a very common problem for our game. Grabbing the
wrong specular probe would cause glowing edges in the dark or not enough energy.

We tried baking directional occlusion into an h-basis and let the artists specify a
distance but it was difficult and error prone. It also didn’t help when you wanted
specular and you weren’t getting it because the cubemap was in the wrong place.
The artists spent a lot of time tweaking cubemap locations.

10

Spherical Gaussian Basis

Cubemap Path Traced

=

READY AT D r‘\\\"N.rE

Here is a comparison of the 3 main techniques. For spherical Gaussians notice the
width of the highlights matches the path traced solution the closest.

11

FPS: 60 (16.6667ms)
VSYNC (V): Enabled

£

Flat Ambient

=

READY AT D r‘\W’N.rE

12

Single Scalar Diffuse

FPS: 60 (16.6667ms) / /
- —_—

VSYNC (V): Enabled

y

=

READY AT D r‘\W’N.rE

FPS: 60 (16.6667ms)
VSYNC (V): Enabled

Cubemap

=
READY AT !)"\\\"NEG

14

Spherical Harmonics 4

' Gl Bakin
FPS: 60 (16.6667ms) / /
VSYNC (V): Enabled & f_- /—
Jr— /.'
N V 4
—

=
READY AT !)“\M"NEG

FPS: 60 (16.6667ms)
VSYNC (V): Enabled

H-Basis 4

=
READY AT D r‘\M"N.EE

16

FPS: 60 (16.6667ms)
VSYNC (V): Enabled

H-Basis 6

=
READY AT D r‘\M"N.EE

17

Spherical Harmonics 9

FPS: 60 (16.6667ms)
VSYNC (V): Enabled

=
READY AT D r‘\M"N.EE

Spherical Gaussians 9

FPS: 60 (16.6667ms)
VSYNC (V): Enabled

=

READY AT D r‘\\\"N.rE

We’ll now go over some motivating comparisons of SG bakes.

20

Cubemap and SH9

=

READY AT l)l\M’N\rE

This is an old screenshot showing diffuse baked lighting with cubemaps. The energy
looks flat and floor is getting energy where it shouldn’t.

21

Spherical Gaussians

Added specular

Specular shadows

=

READY AT l)l\M’N\rE

In this example, we re baked using spherical gaussians. Notice the light is where it
should be and the shadows are also where they should be. The scene looks a lot
more interesting now because of the mixture of shadows and highlights.

22

SG Bake Disabled

In this scene we disabled the Spherical Gaussian lighting.

Baking Specular

23

Baking Specular

« Multiple light sources captured in light map properly
* No aliasing from cube maps (added bonus)

SG Bake Enabled

When its re-enabled notice that the hot spots around the light. It would be very

difficult to capture this type of lighting with cubemaps because you’d need to place
many cubemaps around each light source.

24

Baking Specular

st

SG Bake Disabled

This scene is very dark — it’s missing a lot of specular. In this example the artists didn’t
have enough cube maps. Had they put a cubemap in this area then it probably would
have looked a bit better. However, they didn’t because of memory constraints for
this level. The level was very large and had a huge amount of gameplay area so
getting enough cubemaps in every spot wasn’t a viable option.

25

Baking Specular

Stretched Highlights
« Cubemaps only have Phong isotropic highlights
» SGs can have long stretched highlights

SG Bake Enabled

Notice when we enable SG’s the energy in the area comes back and you also get the
stretched highlight on the metal beam. Spherical Gaussian’s use the half angle
parameterization for BRDFs which allows for elongated highlights while cubemaps
only support an circular highlights.

26

SG Bake Disabled

Baking Specular

27

Baking Specular

SG Bake Enabled

In this example we see two items. We see the elongated highlights on the floor and
wood panels. We also notice all the complicated geometry if we had used cubemaps
in this area only all of the geometry would have been glowing bright.

28

Basic Mathematical Properties

29

Spherical Gaussians

-X—1)

=
READY AT !)“\M"NEG

In my opinion, SG’s are much easier to understand because they have intuitive
parameters.

They also can be graphed in 2d because they are isotropic. In this visualization I'm
taking a slice along the middle and the x-axis represents the angle away from the

mean.

Its an exponential Gaussian like function that falloffs based on the geodesic distance
from the mean.

30

Spherical Gaussians

1
e x-1)

controls the direction it points
= Width controls the falloff
controls the height or intensity

=
READY AT !)"\\\"NEG

31

Spherical Gaussians

controls the direction it points

=

READY AT DA M"N.rE

The mean is simple a normalized directional vector. It’s easy to rotate it to the
direction you want.

32

Spherical Gaussians

= Width controls the falloff

1/4 1/16 1/64

=

READY AT DA M"N.rE

The width parameter or sometimes called falloff, frequency, or inverse width controls
how quickly the function falls off from the mean.

Changing the width parameter changes the total amount of energy the function has.

33

Spherical Gaussians

controls the height or intensity

=

READY AT D r‘\W’N.rE

The amplitude controls the height. Its one of the more intuitive parameters because

it has a linear response. For example, if you multiply the function by 2 then it will
have twice the height at the mean direction.

However, note changing the height also will change the total energy of the function.
Thus, amplitude and frequency are tied together for the total energy of the function.

34

Spherical Gaussians

= SG (operator) SG = SG (closed operators)
» Rotation is simple 3d vector rotation
» Closed form integrals
= Convolutions, inner products
» Closed form products
= Double, triple products, etc..

(operator)

=
READY AT D r‘\\\"N.EE

The real power from SGs come from how many operators and closed form operators
it supports. Because most of the operators generate another SG you can chain
together many simplifications and get a single SG out.

This allows us to take a complicated equation, like the rendering equation, and
evaluate it analytically.

35

Spherical Gaussians

» Can be added together to represent complicated signals

=

READY AT D r‘\\\"l\‘.rE

Another really interesting operation you can do with SGs is add them together.

Imagine you had a room with a blue wall on the left, red ceiling and a green wall on
the right. If you could represent the radiance from each direction onto a SG like | did
in the picture above then you can add them together to get the function on the right.

Simplying sampling the function on the right will give you the radiance in that
direction.

36

= Can represent area
lights

SGs can represent area lights.

Spherical Gaussians

READY AT DAV\’N.rE

=

37

» .. and different BRDFs

SGs can represent BRDFs

Spherical Gaussians

READY AT DA\NN.rE

=

38

56 Lightmaps

=

READY AT DA W’N.rE

SGs in our game were stored into each texel of our lightmaps.

39

Light Map Data

=5,6,9, or 12 RGB non-negative
HDR coefficients
* Number of coefficients is arbitrary
* Could use 4 to replace SH4/h-basis4

* Only contain color data
» BC6 compressed lightmaps

= Mean directions and widths are
hardcoded constants in shader

=

READY AT DA M"N.rE

The only data stored in the lightmap is the HDR RGB color. The number of lobes you
have will dictate the number of lightmaps you will have. It was very easy and intuitive
for the artists to understand this concept. Since the lightmaps represent the radiance
in the lobes direction it was also very easy to inspect and understand what was going
on with each lightmap unlike SH.

The coefficients were only positive which helped out with compression and precision.

The directions or widths were not stored in the lightmap.

40

SG Baked Lighting

» Represent radiance as sum of SGs baked to each light
map texel -

FRS. 60 (186667ms)

¢ P
7, - .
&t - e
£54 EEF vEeCeeCe o
0L e e e,
leecl Qe
" - . 8 /‘ s . '
itle oS
G f ; - g L e el
& 97, X Y A
£ G Aot P "x ' @ | =1

READY AT D r‘\\\"N.rE

Here is a visualization of spherical gaussians on each texel in the lightmap. Each
hemisphere is the sum of the # of SGs. As you can see the sphere in the picture
shows the red radiance coming from the wall on the right, the sky on the top and the

green wall behind the camera and the floor.

41

Fixed Directions

» Fixed set of evenly spaced
directions on the sphere

n5.6:.9 01 12
» Use golden ratio spiral

=

READY AT D r‘\W’N.rE

Based on the number of lobes we’d generate a uniform distribution of directions
using the golden ratio spiral algorithm.

42

Fixed Widths

= Width
» Too small == gaps
» Too large == over blur
= Just right

~

Just right
-
READY AT !)’\\\“Nrg

The width needed to be solved for so it was continuous, didn’t have gaps, and wasn’t
too wide that it overblurred the signal.

43

Why Fixed Basis?

» Variable scalar count
= 27 scalars for color (9 * 3)
= 9 widths
= 18 scalars for direction (theta/phi)

» Fixed scalar count
s == 27
» Fixed Benefits
= 2x more directions for same amount of data
= More optimization opportunities
= No interpolation issues between adjacent texels

=
READY AT !)"\\\"NEG

44

Lighting with SGs

» Basic Idea
= Represent as a sum of SGs
= Represent BRDF as SG

Integrate [BRDF] = Lighting

~ Ll
Integrate [-] = Lighting

=
READY AT !)“\M"NEG

If we can represent the radiance as a sum of SGs and the BRDF as a SG then we can
use the analytical integration operator of SGs to get the lighting out. That’s the basic
idea.

45

SG Baked Lighting

» Actual implementation is more complicated
* Fresnel
= Shadowing
= Masking

= Warping the NDF
= NDF SG is parameterized by half angle
= Radiance SG is parameterized by light direction
= Need them in same space for efficient SG multiplication

=
READY AT !)"\\\"NEG

46

SG Baked Lighting

» NDF approximation
» Beckmann
» GGX

GGX Reference
-

READY AT D r‘\W’l\\rE

Approximating the Beckmann NDF can be done extremely accurately with only 1 SG.
Approximating the GGX BRDF requires 3 SGs to get the nice wide tail.

For the order we could only afford 1 SG. However, with ambient lighting the tail of
the GGX lobe isn’t as noticeable as say it would be with a punctual light source so it
wasn’t as bad as it seems in this slide.

47

Lighting with SGs

* NDF * Radiance
*NDE = Half-Angle Space
« Radiance = Tangent Space ASG for stretch

-
® = =

NDF in half angle space Rotate to light direction Warp to match ref NDF

=

READY AT DAV\’l‘LrE

Unfortunately, we can’t analytically integrate the radiance and the NDF because the
input parameters to the SGs are in different spaces. If we were to integrate over the
lighting directions then we have to convert that lighting direction to the half angle
direction for the NDF. The main idea is to generate another SG that points in the
same direction and best represents the NDF in that space.

The idea is we first rotate the NDF to point in the direction of the light direction. Then
we modify the width to best represent the energy of the NDF. However, SG’s can only
modify width symmetrically but because of the half angle parameterization it actually
scales in one direction more than the other. Because of this we promote the SG to an
ASG(Asymmetric Spherical Gaussian). This allows us to stretch on two directions
independently.

48

Lighting with SGs

Path Traced
-

READY AT DA\NN.rE

Here is an example of using a symmetric SG warp and an asymmetric ASG warp vs the
path traced result.

49

Lighting with SGs

Lighting Equation

Masking Fresnel Shadowing Warped NDF Radiance

=
READY AT D r‘\\\"N.EE

Here is what the lighting equation looks like where | render out the function on the
sphere.

The warped NDF is represented as an ASG

The radiance is represented as a sum of SGs

The Fresnel, shadowing and masking functions are the typical functions we use in
graphics. Note that the Fresnel function and shadowing function is a fairly smooth
function over its domain.

The masking function is actually a constant function with respect to the integral
because we are integrating over the domain of the lighting directions while the
masking function is parameterized by the view direction.

50

Lighting with SGs

Lighting Equation

Masking Fresnel Shadowing Warped NDF Radiance

SG

%/—/

Analytical integral

=
READY AT !)“\M"NEG

The first thing we can do is pull out the masking function because its constant with
respect to the integral.

51

Lighting with SGs

Lighting Equation

Masking Fresnel Shadowing Warped NDF Radiance

Smooth Func Smooth Func SG
\‘%/—/ %/—/
Evaluate product Analytical integral
-

READY AT D r‘\\\"N.EE

Then since the Fresnel and Shadowing is fairly smooth we can pull it out. This is a
fairly strong approximation because the mean value theorem for integration. We
need to pick a good representative direction because that will be the average value.
We pick the lighting direction to evaluate the Fresnel and shadowing.

This is a fairly strong approximation but if you don’t mind paying a little more runtime
cost then you can do piece wise linear approximations of the two to get even higher
accuracy.

Pulling out the three terms allows us to simply take the product of those function and
then multiply it by the analytical integral of an ASG and SG.

52

Lighting with SGs

=

READY AT D r‘\\\"l\‘.rE

To evaluate the final ambient lighting we sum up the integration of the ASG by SG
multiplied by their respective Fresnel and Shadowing terms. Then we multiply it by
the masking function to get the final result on the right.

53

Mirror-Like Materials

» Basic idea
» Rough materials = SG
= Shiny materials == Cubemap
= In between ~= lerp(SG, Cubemap)

=

READY AT DA M"N.rE

In practice
Roughness somewhere ~ .2 in our test scenes
Dependent on # of lobes.
Artists controlled specific blend points in and out per level

54

Spherical Gaussians / Cube Map Blending V

sualization

—

55

A visualization of a specific choice of blending weights for this scene.

D 100% SG Lightmap
D 100% Cubemap

)
(A ' %

56

Handling Custom BRDFs

» Beckmann/GGX work well as an SG

» Cloth & hair can be represented but take more work
= See [REFERENCE]

= Ran out of time

= Treated SG light map data as point lights and evaluated cloth/
hair N times.

=
READY AT !)“\M"NEG

Note: we had fallback for cubemaps with these BRDFs we just didn’t like it because
the spatial energy problem was worse with cubemaps.

57

=

READY AT D r‘\W’l\\rE

For this section, we’re going to take a broader look at the rendering pipeline of The
Order: 1886, so that we can evaluate where we could have done better in terms of
our technology and authoring pipelines.

58

Looking Back

= The Order: 1886 Shipped in
February 2015

= Some tech decisions worked out!
= Material pipeline
= SG baking

» What can we improve?

=
READY AT !)"\\\"NEG

Once we finished production on The Order back in Feburary, it was time for us to
take a close look at our technology so that we could evaluate our strengths and
weaknesses. In some cases, like the material and shading pipeline that we presented
at the 2013 version of this course, it was it was pretty clear that our choices had
worked well in terms of creating both good runtime results, as well as an efficient
authoring pipeline for our artists. However, there were also plenty of places where
we felt that there was plenty of room for improvements that could result in in less
time being needed for creating high-quality assets.

59

R&D Principles

* Driven by real-world needs
= Not just what we think is cool!

» Should make lives easier, not
harder

» Physically based by default

» Default to plausible, real-world
values

=

READY AT D r‘\\\"l\‘.rE

When we started the process, we sat down and thought carefully about what our
goals were, and what sort of things would be worthwhile candidates for technology
improvements. Dave and | both pretty enthusiastic about physically based rendering
technology, and sometimes it’s easy for us to get excited about changing our tech
purely for the sake of having a model that is more closely based on real world
behavior. When this happens, | think it's important to consider whether our potential
changes are driven by actual, real world needs instead of just our enthusiasm. In that
regard, we wanted to make sure that we first started with actual problems
encountered during production before proposing solutions.

On a similar note, we wanted to make sure that any potential solutions result in
tangible benefits to either the quality or efficiency of artist workflows. This implicitly
means that we want to try to avoid new technology that just arbitrarily limits artists
in the name of pursuing physically based behavior.

Finally, whenever technology requires artist-driven parameters, we decided that they
should always produce physically plausible results by defaults. In some cases it might
be necessary to allow artists to break the laws of physics in order to work around

inherent limitations and/or approximations, but this should only occur due to explicit

60

Basic Scene Pipeline

Light Sources

Materials
Exposure

=

READY AT D r‘\\\"N.rE

This is a really basic, high-level view of the rendering pipeline that we used for The
Order. On the left you have light sources, such as the sky, the sun, and local lighting
fixtures. These light sources emit lighting into the scene, which then reflects off the
materials in the middle. This reflected lighting goes through an exposure/camera
simulation step that converts the incoming per-pixel radiance into the final output in
display space.

Out of these steps, only the materials (click) really follow physically based principles.
The rest of these steps (click) were not, and used arbitrary units and standards.
Somewhat unsurprisingly, these areas in red were the places where we encountered
the most problems during production of The Order.

61

Balancing Lighting

—
= No physical basis for:
= Sky
= Sun
= Local lights
= Exposure

= How to balance?

=
READY AT D r‘\\\"N.EE

The underlying theme to our problems was balancing various light sources. If you
want a realistic scene, it’s critical that your various lighting sources are all balanced
with one another once they’re combined. But for us, the problem was that we didn’t
really have a fool-proof way of ensuring that this balance was correct when artists
were adding light sources.

62

Balancing Lighting

= Made ‘atriums’ for various \ . \ ,, l
lighting conditions ff
» Standardized in-game !

exposure values =

» Visually balanced light sources
= AKA: tweak until it looks good dc

= See our production session

£
| &8\

=

READY AT D r‘\\\"l\‘.rE

The way we handled balancing was to use test environments for specifying the
intensity of lights and various emissive effects. These environments all used the same
atrium geometry, which was coupled with various sun and sky components that
reflected varying weather conditions as well as times of day. The artists chose
standardized exposure values in these atriums, which were typically used as base
exposure values for similar in-game conditions. To balance the light sources, they
were simply added to the scene and their intensity was tweaked until they appears to
be visually coherent with the rest of the scene. This process was somewhat error-
prone, and time consuming as well.

63

Balancing Lighting

» Good end results, but not very
efficient

» Lots of time tweaking, chasing
down problems

= Can we make this easier?
= We think so ©

=

READY AT D r‘\\\"N.rE

The takeaway that we had after the project was that while it was definitely possible
to create compelling visuals with our process, it definitely was as efficient as it could
be. We firmly believe that applying more physically based principles to our pipeline

could help us to end up with a more streamlined workflow.

64

Skies in The Order

» First attempt: Vue by e-On Software
= Full procedural skydome
= Used by VFX industry
= Artists had trouble using it
= Steep learning curve
» Slow renders
» Typically used by specialists
*Need to revisit in the future

=
READY AT !)“\M"NEG

Early in the project, we evaluated Vue by e-On Software as a tool for authoring HDR
skydomes. It’s a full procedural solution that’s very powerful, but it also has a pretty
tough learning curve. At VFX studios that use the tool, it’'s common to have a
dedicated Vue artist that’s an expert in all the parameters exposed by their
simulation. We had no such expert, and so the artists decided to pursue a more low-

tech solution.

65

Skies in The Order

» Shipping solution: purchased HDR
sky images
» Extra details added in Photoshop
» Arbitrary intensities!
= \Very inconsistent across images
» Causes issues with HDRI

» Had to visually balance by hand
» Endless tweaking

=
READY AT D r‘\\\"N.EE

Most of the skies used in the final game were based on HDR images that were
purchased from various third-party libraries. Our vista artists found these much
easier to work with, since they could use familiar tools like Photoshop and Mari to
customize the image with additional details. The major issue with this approach was
that the HDR image were all over the place in terms of their intensity. They didn’t
utilize any particular physical units for the pixel values, and so we had to manually
tweak the overall intensity until they fit with the arbitrary units used by our game.

66

Procedural Sky Models

» CIE sky models [CIEO4]
» Only gives relative luminance
distribution ®
» [Preetham99]
» Analytical luminance + chromaticity
» Includes direct solar radiance
» [Hosek-Wilkiel2]
» Improved analytical model
» Based on spectral path-traced data

=
READY AT D r‘\\\"N.EE

As part of our R&D, we’ve started investigating various procedural sky models. There
are a few such models that are popular in graphics research.

The CIE general sky is primarily designed for architectural models, and doesn’t give
you absolute luminance values. It also has no chromaticity whatsoever. This makes it
pretty much unsuitable for our purposes, since at the very least we’d like to have a
physically correct intensity.

The Preetham model is pretty old at this point, but has gotten a lot of use. It provides
an analytical means of computing the luminance and chromaticity for any given point
on the sky, and has only a small set of parameters.

The Hosek-Wilkie model is fairly new, and aims to improve on a few deficiencies
present in the Preetham model. Like Preetham, it provides full RGB data with a
similarly-small set of parameters.

67

Hosek-Wilkie Sky Model

» Good for prototyping and validation
» Easy to integrate (sample code)
= Physically correct intensity
» Simple parameters

» Useful for authoring?
» Procedural clouds?
» Paint details on top?
» Needs more investigation

=
READY AT D r‘\M"N.EE

We're still in the early stages of R&D, but so far the Hosek-Wilkie model has proven
to at least be useful for prototyping and validation. The authors provide a sample
implementation as C code, and it was pretty trivial for us to integrate that into our
testbed application. Once integrated we were immediately able to get balanced
renders that had the appropriate lighting intensity. We’ve also had some success at
using it in actual game scenarios, which is done by generating EXR images that are
imported into the game engine. However, it is still unknown whether or not it will be
useful as a means of authoring the final skies used in a shipping product. To know
this, we need to spend time investigating the means by which we might add
additional details to the sky, such as clouds mountain ranges.

68

Sunlight in The Order

» Runtime directional light

= Arbitrary color and intensity

= Same as skies: tweak until it looks
balanced

» Cascading balance problems
» Is the sky wrong?
» Is the sun wrong?
» Are they both wrong?!?

=

READY AT D r‘\\\"N.rE

For modeling illumination for the sun in The Order, we utilized a runtime directional
light with hand-picked intensity values. Like the sky, this light source used arbitrary
units, and thus it was up to the artists to visually verify that the sunlight looked
balanced with the sky. The problem that arose was that we now had an additional
unknown to deal with when trying to debug issues that cropped up during
production. For example, if a particular specular highlight from the sun appeared too
bright, we didn’t know which component was causing the problem. Was it that the
sun was too bright? Or perhaps the sky was just too dark. Or perhaps the material
was wrong. Without a real-world frame of reference for lighting units, we were often
left scratching our heads at these sorts of problems.

69

“Double sun” problem

d Lighting R&D at Ready At Dawn Studios | SIGGRAPH 2(

This image shows another common issue with sunlight that you can run into if you're
using captured cubemaps as IBL specular probes. If your sky image has a solar disc,
and you capture that in your cubemap probe, you’ll see that solar disc show up in the
runtime reflections. Often the resulting highlight will be too dark due to incorrect
intensity, and it will show up in shadows due to poor spatial locality of the specular
probes. With a full procedural model it is trivial to handle this: just leave out the solar
disc when capturing your specular probes. However if it’s in the sky image, then you
have to find a way to remove it. For The Order, we would often try to paint over the
sun, or block it with occluder geometry.

70

Procedural Sun

» Currently trying Preetham Sun

» Great for authoring!
= Calculate color + intensity from
elevation
= Tweak color/size/intensity relative
to physically correct defaults

=
READY AT D r‘\\\"N.EE

To help resolve some of these issues, we’ve also begun experimenting with using a
procedural sunlight model for illuminating the scene. Currently we’ve been using the
Preetham model for computing solar radiance, but the Hosek-Wilkie model also
provides a solar radiance function that includes simulation of limbal darkening.
We’ve had great success with using it as an authoring tool. All you need is the sun’s
current elevation, and you can compute the appropriate color and intensity for the
solar disc. With some simple math, it’s also possible to compute the resulting
irradiance given the size of the sun, which can then be used to determine an
approximate intensity for a directional light.

71

Sun Elevation: 85° - f/16

d Lighting Ul Ready) ud SIGGRAPH 20 READY AT DAWN.

This a set of images rendered in our custom path tracer, using the procedural sun and
sky model. These aren’t meant to be impressive, they just how easy it was to render
balanced lighting with appropriate intensities. You can see how the aperture size

changes as the sun goes down in order to match the corresponding drop in sun
intensity.

72

Sun Elevation: 65° - f/16

) IGGRAPH 20 READY AT DAWN.ILI

Sun Elevation: 45° - f/16

D y AtD ‘ IGGRAPH2015 ~ READY AT DAwN.ILT

Sun Elevation: 25° - f/16

READY

AT pawnN.TLd

75

Sun Elevation: 5° - f/11

76

K

. —
\a

Sun Elevation: 0.5° - f/8

READY AT DAwN.ILI

Local Lights in The Order

» Point and spot lights at runtime

» Sphere, disc, quad area lights for
baking only

* No physical units or intensities

» Made a database of light fixtures

» Quickly place light + fixture mesh
inside of Maya

=

READY AT D r‘\\\"N.rE

The Order featured a variety of local light sources, which were primarily modeled as
simple point and spot lights at runtime. Like the sun and sky, they didn’t use physical
units and instead used arbitrary intensity values.

One thing that we quickly realized was that we weren’t going to be able to
individually choose parameters for every single light source in the game. To cope
with this, we created a database of light fixtures that could be quickly placed into a
scene using Maya. These fixtures contained both the runtime light source, as well as
the geometry representation for the light and its surrounding fixture.

78

Balancing Local Lights

= Artist specified intensity in atriums
» Tweaked until it looked “right”

» Yet another layer to the balancing
problem
» Impossible to validate

» Problems at indoor/outdoor
transitions

=

READY AT DA M"N.rE

Since we didn’t use physical units, the lighting artists needed to manually verify that
the resulting lighting looked balanced when combined with the sun and sky. To do
this, they again used the test atriums to visually inspect both the light contribution as
well as the emissive component. Basically, the artists would just drop the lights into a
certain lighting condition, and then try to make sure that the light source looked the
way that they would expect it to work.

The major problem here was that it was basically impossible to validate anything
once local lights were in the mix. It was really just another layer on to of the
balancing problem, which added yet another possible source for unbalanced lighting.
We also had some issues in transition areas between two lighting conditions. In some
cases things were set up well for one particular condition, but when the exposure
changed to a value appropriate for a new lighting condition the balance would
appear incorrect.

79

Local Lights: The Future

» Real-world units and intensity ranges
= Match sun and sky by default
» Easier reference comparisons

» Lots of options [Lagarde 2014]
* Luminance (cd/m2)
= Luminous flux (lumens)
= EV100

=

READY AT DA W’N.rE

In the future, we think that using physical units for light sources could be a big help.
It’s easy to look up actual values for various light fixtures, and so those could be used
in-game to make sure that the resulting illuminance is something that the artist
expects. It could also be extremely helpful for matching our engine to real-world
reference scenes.

Sebastian Lagarde presented a few options last year for using physical units, and
we’re still doing R&D to decide what will work best for us.

80

Exposure: The Order

» Single scalar applied before tone
mapping
= Artist specified in log2 space
= Simple geometric mean auto-exposure
= Exponential feedback for adaptation

» Lots of manual intervention
= Min/max exposure clamps
= Key value adjustments
= Specified per region

=

READY AT D r‘\\\"l\‘.rE

Exposure is another component of the overall problem, since it’s responsible for
taking the reflected per-pixel lighting values and scaling them into a range that’s
suitable for tone mapping into display space. In The Order, our exposure was just a
simple scalar value that was directly applied to each pixel right before the tone
mapping stage. Consequently, there wasn’t any particular mapping to real camera
parameters or exposure standards. We did allow the artists to specify it in Log2
space, in order to at least somewhat match the response of parameters used in real-
world cameras.

For auto-exposure, we took the fairly common approach of computing the geometric
mean of luminance for the entire screen, and then picking a scale value that would
map that average luminance to a particular middle grey value. As lots of other
studios have found out, this technique can have a lot of problems. Since its based on
taking an equal average luminance of the screen, it can often end up choosing an
exposure that’s not well-exposed for any particular element of the scene. We ended
having to use a lot of manual intervention to get acceptable results, which mostly
took the form of the min and max clamp values that were applied in regional
volumes. This is obviously not the kind of workflow that we want for a system that’s
supposed to be automatic.

81

Auto exposure (default)

READY AT DAwN.ILd

To show an example of how auto-exposure typically failed for us, here’s an in-game
capture taken from the Blackwall Yards level. In this screenshot, automatic exposure
is enabled with default settings. The resulting exposure doesn’t really work, since the
vista seen through the window is too blown out, washing out all of the details. This
happens because the system is trying to compensate for the darker areas on the

bricks, which are darker both because of the interior lighting as well as because of
the darker albedo.

82

Y

Manual exposure (artist-specified)

Advanced Lighting R&D at Re wn Studios | S 5RA 2015 READY AT DAWN.

Here’s the same screenshot, but with an artist-specified exposure value instead of
using the automatic exposure system. The result is much more balanced than the
previous shot, since you can see all of the key details and silhouettes in the vista area.

83

Exposure: The Future

» Physically based exposure model
» [Lagardel4][Hennessey14]
» Real-world parameters
» Photography guidelines

» Better metering
» Experiment with weighting schemes
» View-dependent constraints

= More R&D!

=

READY AT DA M"N.rE

For future projects, we’re planning on adopting a more coherent physically based
exposure model. We've been experimenting with driving exposure with actual
camera parameters such as aperture and EV’s, and the results have been promising.
Using real parameters makes the exposure more consistent with physically based
lighting intensities, and allows us to use common photography conventions for
choosing exposure.

For automatic exposure, we are currently looking into alternative techniques for
metering and weighting schemes. | firmly believe that we can do a better job of
metering by making more use of information that’s inherently available to a game.
For instance, in our games we typically have a player character right in front of the
camera, and so it should be possible to weight the player pixels higher so that the
model always ends up well exposed. There have also been recent games that take
the approach of computing exposure based on the incident irradiance of surfaces
rather than using the final reflectance. Doing this means that albedo and specular
don’t affect the result, which is exactly what you want in a lot of cases.

84

Depth of Field: The Order

» Scatter as gather

» Internally: focus planes
» Explicit control over focus areas
= Easy to create unrealistic DOF

» Exposed to artists as camera
params
= Aperture, focus distance, etc.
» Game-side conversion to focus planes

=
READY AT D r‘\M"N.EE

This is somewhat unrelated to the other topics that | just discussed, but | bring it up
since it’s another example of where we’re moving to physically based parameters. At
an engine level, our depth of field was driven by 4 focus planes. Basically we would
use the pixel depth to blend up to a certain CoC size based on where that depth value
ended up relative to the planes. If these parameters were used directly, they basically
gave the artist direct control over which areas were in-focus and which areas were
out-of-focus, which didn’t have to be grounded in any real-world camera behavior. As
a result, it was really easy to create a totally unrealistic depth of field effect, and
rather hard to choose settings that looked realistic. At various points in the project, |
brought up the idea of using real camera parameters to our artists and designers, so
that they could get realistic results by default. However at the time, we felt that
having absolute control was more desirable.

As production went on, some of our gameplay camera systems adopted few camera
parameters to the artists, and then performing an ad-hoc conversion to focus planes.
These camera parameters ended up working out very well, disproving our earlier
concerns about loss of control.

85

Depth of Field: The Future

= Switch engine to use the physical i
camera parameters ladc Lo
= Familiar parameters for artists o pageiee
= Realistic results by default Focal Lengti) L5
Focus Distance 1.0

= See [Sousa2013] mcp;gt;lremada

» Couple with exposure by default?

= Allow for selective decoupling
= Exposure/CoC offsets h, j‘
= Allow fully decoupled parameters? Object

= Validate with ground truth!
= Simple thin lens approximation
= TODO: more complex lens systems

=
READY AT D r‘\\\"N.EE

Based on our past experiences, it's now clear to us that real parameters should be
used throughout the whole pipeline. One thing that is somewhat less clear is whether
or not we should couple the depth of field parameters to exposure, in order to mimic
the behavior of a real camera. At the moment, we’re leaning towards coupling them
but with selective controls for biasing the behavior of either system for extreme
cases. However it will take a lot more real world experience before if we know
whether or not that’s a good decision.

One more thing I'll mention is that we’ve started validating our depth of field
approximation against a ground truth path tracer. Doing this helps spot bugs and
other issues that cause the real-time approximation to look different from ground
truth. One thing | still need to do for this is improve the ground truth simulation with
more complex lens systems, such as the ones you find in DLSR cameras. Doing this
might help to inform the real time version, so that we can get higher quality results.

86

Stephen Hill
Stephen McAuley
Nick Blasingame
Joe Schutte

Acknowledgements

=
READY AT !)"\\\"NEG

87

David Neubelt

@daveneubelt

Matt Pettineo

@mynameismjp

Questions?

88

[CIEO4] -
[Preetham99] -
[Hosek12] -
[Hosek13] -
[Lagardel4] -
[Hennessey14] -
[Sousal3] -
[Wang09] -
[Xu13] -

[Xu14] -

References

=
READY AT !)"\\\"NEG

89

