
Hi,

Thanks for the introduction.

So, I’ll be talking about
accurate indirect occlusion.

1



First of all I’d like to show all the authors of this work,

Xianchun Wu, Angelo Pesce, Adrian Jarabo and me.

2



3



Due to time constraints, I’ll try to keep the talk high level.

You will find all the details online in our technical report and the full slide deck,
so we definitely recommend to check them out.

4



5



In the past few years, the adoption of physically-based BRDFs
has been a crucial improvement to the consistency and realism of real-time 
rendering.

Large efforts have been made to improve this term of the rendering equation, 
marked in orange.

6



And we have seen improvements in the accuracy of incoming radiance, in green, 
with the adoption of environment look up tables for image-based lighting.

However, its implicit visibility term, in blue, has received less attention.

We think that both diffuse and specular occlusion are very important ingredients of 
the rendering equation,
and in this talk we will explore them in more detail.

Without them, no matter how accurate our BRDF and lighting models are,
we are missing that component that makes objects stick to the ground.

That makes them feel part of a connected world, rather than individually composited 
objects.

7



In real-time rendering, we often hack or heavily approximate the occlusion,

This is understandable given the constraints of the previous generation of consoles.

But the question that we asked ourselves is: do we still need to do so?

Can we use accurate approaches in reasonable budgets, under the constraints of 60 
frames per second?

Bear with me, and we will discover this out…

8



The core of our methodology for both the diffuse and specular occlusion has been to 
constantly compare with Monte Carlo ground truth at each step we performed,
to ensure the correctness of our techniques.

9



We derived analytical solutions where possible,
and from there…

10



…we found approximations for the residual error from the ground truth.

11



The ultimate goal was to achieve better quality while staying in the same 
performance budget as previous techniques,
making this solution a simple drop-in replacement.

For ambient occlusion, our budget was 0.5ms on the PS4 at 1080p.

Note that I will not cover optimizations during the talk, but you will find them on the 
online material.

MiniEngine SSAO:
https://github.com/Microsoft/DirectX-Graphics-
Samples/blob/master/MiniEngine/Core/Shaders/AoRenderCS.hlsli

12



13



The first part of this talk will showcase a new screen-space ambient occlusion 
technique that we called GTAO.

14



I’d like to start by showing some in-engine renderings.

Here we can see an image without any indirect occlusion at all…

15



…and here with GTAO.

This image clearly shows the importance of having accurate occlusion.

A key observation is that with accurate occlusion, we can see subtle but important 
changes in lighting in some areas, for example near the wall corners…
…but really strong changes in others, like the tubes on the ceiling.

Let’s go back and forward a couple of times so that you can observe the differences 
again…

16



Here you can see the ambient occlusion of this scene.

17



This is another shot, without ambient occlusion…

18



…and with GTAO.

Notice how our technique is not shy of darkening where it needs to be darkened.

19



20



And a final example without occlusion…

21



…and with GTAO

22



23



24



25



26



27



28



29



I’ll start with a teaser of what will be presented.

On the left, we have uniform weighting ambient occlusion, which is what we often 
use.

We will show our journey from this, towards achieving a close match to the occlusion 
in a Monte Carlo rendering with multiple light bounces, which is on the right.

Notice how different they look.

So, we want to go further than the classic occlusion equation, and attempt to match 
real lighting occlusion instead.

30



We will show how to add the cosine term to horizon-based ambient occlusion…

31



…and we will show what happens when we consider more than a single bounce of 
light…

32



…and the extension for colored objects.

Here we can see that our final solution, marked in orange,
is a close match for the Monte Carlo reference.

33



I’d like to start with the core or basics of our technique, and then show how we 
improved on that.

So for that, we need to define, what is ambient occlusion?

Let’s start with the rendering equation, where you can see the emitted and incoming 
radiance and the BRDF.

If we assume there is no emission, and we use the Lambertian BRDF…

34



…we get this.

If we then assume a constant white dome is illuminating the scene, and we only 
calculate a single bounce of light…

35



…we obtain this.

Notice a new visibility term appeared, that specifies if a ray hits the sky or not.

Then if we rearrange the terms…

36



…we arrive to the classic definition of ambient occlusion.

So, we can say that the ambient occlusion multiplied by the albedo is the lighting for 
the case of:
a white dome,
a single bounce of light and
a Lambertian surface.

37



In real scenes though we don’t typically have uniform white lighting.

The typical approach to account for this is to just multiply the ambient occlusion by 
the pre-convolved probe,
which will still be accurate for the case of a white dome, but not for any other 
scenario.

38



So, now that we have defined what is ambient occlusion, let’s continue with the 
problem statement.

We want to find a solution to the ambient occlusion equation, which in simple terms 
is just the visible area of the hemisphere,
weighted by a cosine term modelling the foreshortening.

Sometimes, ambient occlusion is solved with uniform weighting…

39



...which unfortunately doesn’t yield ground truth results for the assumptions we 
made, so we won’t use it here.

40



This is the input data that we have.

The surface normal, which can either come from a normal buffer or derived from the 
depth buffer.

And the visibility function, which in our case comes from a depth buffer given that we 
work in screen space. 

This means that the scene is represented as an height field, and as we’ll see later on, 
this is a very important observation.

41



42



We can calculate the ambient occlusion integral as a double integral in polar 
coordinates.

The inner integral integrates the visibility for a slice of the hemisphere, as you can see 
in the left,
and the outer integral swipes this slice to cover the full hemisphere.

The simplest solution would be to just numerically solve both integrals.

But the solution we chosen, horizon-based ambient occlusion, which was introduced 
by Louis Bavoil in 2008,
made the key observation that the occlusion as pictured here can’t happen when 
working with height fields.

Using height-fields we would never be able to tell that the areas in…

43



…green here, are actually visible.

The key consequence of this, is that we can just search for the two horizons h1 and 
h2…

44



…and that captures all the visibility information that can be extracted from a height 
map,
for a given slice.

So, with this information at hand, we no longer need to calculate both integrals 
numerically…

45



…and can instead perform the inner integral, in orange, analytically,

which is substantially faster.

The original horizon-based ambient occlusion technique used uniform weighting,

so this means that we need to figure out how to do this analytical integral for the 
cosine weighting case.

46



47



48



49



50



51



52



53



𝒑𝒔 and 𝒑𝒄: sample and center positions in view space

𝒗 = −𝒑𝒄: view vector

𝒎: sample count

In this diagram, 𝒅𝒔 samples to the left and 𝒅𝒕 to the right.

54



55



56



57



58



59



60



To solve ambient occlusion with cosine weighting,
we integrate the visibility from the view vector to h1, marked in green,
and the visibility from the view vector to h2, marked in blue,
taking the cosine term into account, marked in purple on the equation.

It is a bit more involved than this, but I’ll leave the details to the technical report and 
the online slides.

[Note: here 𝑣𝑑 and 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝐴𝑟𝑐 are NOT the same as in the 𝑉𝑑
𝑢𝑛𝑖𝑓𝑜𝑟𝑚

case, we just 

avoided renaming everything with “uniform” and “cosine” not to clutter the 
equations]

61



62



63



64



In this slide we have a comparison of the ground truth
and our results so far.

So, we have done a quick recap of how to efficiently calculate the integral using 
horizon-based ambient occlusion,
and then we have shown how to take the cosine term into account.

65



Now, to move this forward, we will relax the assumption of using a single bounce of 
light…

66



…and replace it with the assumption that the albedo for the point being shaded is 
similar to that in the close neighborhood.

Doing this allows to approximate multiple bounces of light.

67



The high level idea is simple. 

We calculate references using single and multi bounce Monte Carlo raytracing, for a 
given albedo, which is shown in the images on the right.

Now the idea is that we can perhaps fit a function that will map the single-bounce 
results to the multi-bounce ones.

Note that most previous techniques tried to avoid the overdarkening produced by AO 
introducing Ambient Obscurance,
which empirically assigns less weight to far away occluders.

We instead try to directly account for the lost energy with a correction function on 
the AO value,
and derive this function from data.

68



So, we started looking at the data for a given albedo, in this case 0.6.

On the right we have a plot of how intensities in the single bounce image on the 
horizontal axis, 
map to the ones in the multi bounce image on the vertical axis.

For this data, we found that fitting a cubic polynomial function was sufficient to 
model this correlation.

69



Then, to generalize to varying albedos, we calculated seven multi-bounce references, 
for albedos ranging from 0.1 to 0.9.

For each albedo, we calculate its own cubic polynomial fit.

On the right you can see the 7 polynomials, and their coefficients,
and on the plot how the curve changes shape as the albedo increases.

70



We found our fits to work great for our test case, which was a human head.

But we wanted to discover if the technique generalizes to other cases.

Se we prepared a larger dataset and performed fittings for all the scenes shown here.

71



You can observe that even if our fitting functions are not exactly the same for all the 
scenes,
they all look reasonably similar.

Especially for the lower albedos, which are the ones that we more often find in 
nature.

72



So, using all this data, we did a final fitting and obtained this.

At this point we know how to do the multibounce mapping for the seven albedos that 
we used for the fitting, but how to generalize to arbitrary ones?

73



To find out, we plotted the coefficients a, b, c of the cubic polynomial of each albedo 
that we fitted.

So, in these figures, you have albedo in the horizontal axis, and the coefficient value 
in the vertical one.

As you can see they are pretty much linear, so we approximated the polynomial 
coefficients as function of the albedo with linear equations.

74



So, to recap.

We have a function that maps from single bounce AO to multi bounce AO, for a given 
albedo.

75



For this functions, we used a cubic polynomial.

76



And the coefficients a, b and c for this cubic polynomial are obtained using a linear 
function per coefficient.

77



And this is the resulting shader snippet.

In the end, it’s quite simple and very fast.

Two inputs, visibility and albedo, and single output, colored multi bounce visibility.

78



So, here you have it in action.

We can see how the shape of the mapping changes, as we modify the albedo.

79



80



This slide shows a comparison between doing a single bounce on the left,

the Monte Carlo reference in the middle,

and the results obtained using our multi-bounce fitting function on the right.

81



To finish this part, I want to compare our starting point, on the left, with our final 
results, on the right.

And as you can see, considering the cosine and the multiple bounces yield a 
significant visual difference.

82



83



84



85



We are not covering the details in this talk, but this is perhaps an important one.

So, the problem was, how we do all this in engine in 0.5ms?

Horizon-based approaches are perhaps the optimal way to calculate ground truth 
approximations,
they are still slower than empirical solutions.

In this budget we could only afford half resolution and 1 direction per pixel, which as 
you can imagine is quite noisy.

86



Then we applied a 4x4 bilateral filter, as usual, which creates 16 directions per pixel.

It looks ok on static images, but working in half resolution it was still quite unstable.

87



So, we had to heavily rely on temporal filtering to stabilize the image, and to increase 
the directions to 96 per pixel.

It is typical to use temporal filtering for ambient occlusion, but it is usually seen as a 
finisher.

It our case, we strongly rely on it, specially for improving the temporal stability.

88



The cost of the base GTAO was around 0.35ms, and the spatial and temporal 
denoising 0.15ms.

Note that the denoising can be amortized if we need to denoise other half resolution 
images, like for example SSR ones,
as many memory accesses and calculations would be actually shared.

89



90



91



92



93



94



95



96



97



98



99



100



101



102



103



104



105



106



107



108



109



110



111



So, we’re done with ambient occlusion, and now we will dive into the details of our 
specular occlusion technique,
which we called GTSO.

112



To motivate the importance of accurate specular occlusion,
I’ll start showing its importance for character rendering.

Here you have a character rendering without specular occlusion…

113



…and here with it [back and forth].

We think that specular occlusion is as important as ambient occlusion,
but unfortunately it doesn’t receive as much attention.

114



I’d like to start with a brief recap of the split integral approximation for image based 
lighting.

It approximates the rendering equation by splitting it to two pieces, in orange and 
blue.

In orange, the probe convolution, 
and in blue, what is called the environment LUT.

Notice that we added a visibility term here, in green,
which is typically ignored or approximated via simple hacks.

115



The core of our technique consists on adding a further split for visibility, in green 
here,
which can be seen as prefiltering the visibility.

[stop for a few seconds]

Note that the stars on the integrals…

116



…means that we normalize them, something that is also done by the previous split 
integral approximations.

117



Here you have a comparison of the original two split integral on the left, and our 
three split on the right.

You can see how the three split approximation is still quite close to ground truth, and 
doesn’t introduce more error than the two split one.

118



119



120



121



So, let’s dive into our first specular occlusion attempt.

We made the assumption that both the visibility and the BRDF can be approximated 
by cones.

The idea is then to calculate the occlusion using the intersection of these cones.

The visibility cone can be obtained from the bent normal and occlusion values, which 
can either be baked or computed by GTAO.

And the reflection cone can be derived from the reflection direction and roughness.

122



For this, we first calculate the visibility and specular cones.

123



Then we calculate the solid angle of the intersection.

124



The solid angle of the reflection cone.

125



And with both at hand, we can calculate the percentage of the occlusion by doing a 
simple ratio.

126



127



128



129



Note: [Uludag2014] appears with a typo on the article, and shows it as 𝛼𝑠

= cos(0.244
1

𝑝+1) instead.

130



131



132



133



134



135



136



Or in more detail, this.

The visibility V sub s here is a function of three parameters, so we actually baked it 
into a 3d lookup table,
which will be important as we will se later on.

137



So, time for some comparisons.

On the left we are using AO as specular occlusion,
next we have [Lagarde2014] approximation,
next we have the cone/cone intersection approximation that we have just explained, 
in orange,
and on the right the reference.

Note that while not perfect, the cone/cone intersection technique more closely 
matches our reference.

138



139



To improve on these results, we wanted to relax our assumptions.

In particular to stop approximating the reflection lobe with a cone.

140



If you remember this, we baked the intersection into a look up table.

So, why we need to use a cone to represent our BRDF, when we can actually calculate 
the intersection with the real lobe shape offline?

141



What we bake into the lookup table is in particular, this.

Still a 3d look up table, but with slightly different parameters, as we obviously need to 
pass the roughness.

The integral basically calculates the reflection lobe over the hemisphere, but masking 
the rays that are outside of the visibility cone.

142



In this comparison, we can see on the left our previous cone/cone intersection,
on the middle the reference,
and on the right the new cone/lobe intersection that we have just presented.

Note how it substantially improves on the overdarkening that we were getting near 
the silhouette of the character.

143



All the previous comparisons were done using Phong (as the previous work used 
Phong for gloss to aperture calculations), but we can now use any BRDF we want, like 
GGX.

So from now on, we will use GGX, which is what we used in-engine for rendering.

144



145



The next step for us, was to derive a specular occlusion definition that is analogous to 
ambient occlusion.

That means that it should be ground truth if the probe has a constant value,
but our current definition does not comply with that.

If we include the full BRDF in the visibility term, instead of just using the distribution 
function…

146



…and we expand the normalization factor we mentioned earlier…

147



...and we substitute in the rendering equation…

148



You can see that the normalization denominator and the environment look up table 
cancel out,

and we reach to the result on the bottom right.

Let me zoom in.

149



Here we can see that if we replace the incoming radiance, in purple, with a white 
dome …

150



…the orange part will be completely gone, as it integrates to 1…

151



…so we reach an equality, rather than an approximation, for the case of a white 
dome.

152



153



This is how this new formulation looks like, when compared with our previous one.

154



And here, you have some final renders for a white dome.

With our old formulation, on the left,
ground truth, in the middle,
and the new formulation on the right.

To better see that it completely matches the ground truth, lets flip the images back 
an forth.

155



The new approach on the right is completely equivalent to the ground truth.

156



Note: differences are due to aliasing differences, given that we are using Monte Carlo 
for these renders.

157



158



159



160



The previous comparisons used the real visibility, on the interest of showing the 
match with the ground truth for a white dome.

But as you can see here, using a cone visibility is still a very good match to the ground 
truth.

161



Going to the conclusions, I’d like to remark that, in our opinion, occlusion is as 
important as using physically based BRDFs,
if the goal is to achieve correct and photorealistic results.

To recap:
Our first contribution was to derive accurate approximations for both ambient and 
specular occlusion,
without constraints on the number of bounces for ambient occlusion,
nor on the BRDF we use for specular occlusion, given that it is actually baked.

The second contribution was to define an equation for specular occlusion that is 
analogous to the ambient occlusion one, meaning that it yields ground truth results 
when using white domes.

And finally, as our techniques have been employed in production under strict 
performance budgets,
we have shown that we have less reasons now,
to employ inaccurate hacks for indirect occlusion in modern hardware.

162



So, this ends our presentation, I hope you liked it, and please do not hesitate to make 
any questions after the session is finished.

163



164



165


