
Physically Based Shading at DreamWorks Animation

Feng Xie and Jon Lanz

1 BRIEF HISTORICAL OVERVIEW

Before we talk about shading, which models the physical interaction of light and material surfaces, let us give a

brief overview of rendering and shading history at PDI and DreamWorks Animation.

Figure 1: Antz: Paci�c Data Images’ �rst animated �lm.

Antz was the �rst �lm made by PDI/DreamWorks. �e production of this �lm lead to the development of: an

early animation production pipeline with a new scene graph format developed by Lawence Kesteloot; a scanline-

based polygon renderer D_RENDER that supported deferred shading using deep frame bu�er developed by Dan

Wexler; and an interactive lighting system called Light, developed by Drew Olbrich. Lightwas designed to give

interactive redraw and reshade feedback to users on entry-level Unix workstations, such as SGI O2 systems
1
. It

had a spreadsheet UI for asset de�nitions; a 3D viewer for interactive geometry, camera and light placement, and

view examination; and a render viewer that was tightly integrated with D_RENDER to allow users to seamlessly

update shadow maps, rasterize the deep framebu�er and reshade subviewports at will when lights or materials

were changed. D_RENDER supported a C++ shading API for lights, materials and procedural nodes. For shading

Antz mostly used a simple surface shader with lambertian di�use and Phong specular model with a few heuristic

Fresnel components.

Shrek and Shrek2 brought about a lot of progress in shading. Jonathan Gibbs developed an uber surface shader

with Ward specular model and a Kajiya Kay based hair shader, while Rick Glumac developed an eye shader that

used pseudo raytracing of procedurally generated geometry. A visit and presentation of di�usion-based sub-

surface sca�ering by Henrik Wann Jensen from Stanford lead to a collaboration with PDI FX artist Juan Buhler.

Together, they developed an octree-based solution for rapid evaluation of di�usion-based subsurface sca�ering,

which made the approach viable for feature animation [JB02]. Fiona, in Shrek, was the �rst PDI/DreamWorks

character to have translucency in her skin.

1
200 MHz MIPS CPUs with a 1 MB L2 cache.

1

Figure 2: Shrek added base, hair and skin shaders. Fiona was the �rst animated CG character to use subsurface sca�ering on her skin.

Figure 3: Shrek 2 was the �rst PDI/DreamWorks �lm to use single bounce indirect lighting, allieviating the need for artists to manually place

many �ll lights to approximate indirect lighting e�ects.

�e shading and lighting paradigm in D_RENDER was similar to Pixar’s Renderman, in that materials performed

light integration by looping through all applicable lights. �is paradigm was su�cient for supporting traditional

CG point and directional lights, which were the primary lighting models we used in those early �lms. Indirect

lighting was emulated by artists manually placing a large number of �ll lights, which was obviously quite te-

dious and o�en incorrect. Around the early 2000s, Eric Tabellion and Arnold Lamorle�e [TL04] developed an

irradiance- cache-based global illumination appoximation system for D_RENDER and PDI’s lighting system. �eir

solution was integrated into the rendering system as a “bounce” light shader and it was used by many �lms at

PDI and DreamWorks, from Shrek 2 onward.

Around 2007 to 2008, the term physically based shading started to emerge in CG �lm shading, primarily in visual

e�ects productions where there was a high degree of motivation for CG rendered assets to match physical

plates/footage in their lighting and re�ectance appearance. Within DreamWorks, the motivation for physically

based shading did not come from matching physical realism, but from two interrelated motivations: the �rst

being the artistic desire to create a richer and more nuanced look in our characters and environments, the

second being that variation in material and lighting setups resulted in inconsistencies between surfacing (look

development) and production lighting. We looked to physically based shading models that were consistent or

plausible under various lighting conditions, as a way to increase the richness of our looks without incurring an

2

explosion in lighting and material setup complexity.

Figure 4: Megamind: For this superhero movie, set in a modern cityscape with lots of metal and glass, we revamped our base material to use

physically based Fresnel with accurate metal support.

�e �lms that de�ned this “look and shading”-based transition from both the artistic and technical perspectives

are Megamind, Rise of the Guardians and �e Croods.

Megamind (2007–2009) was an animated superhero �lm that was set in a modern/futuristic city landscape. �e

look of the �lm called for more physical realism than any of our previous productions. �e environment had

a lot of glass and metals, with volumetric lighting e�ects. With support from VFX Supervisor Philippe Denis

and Look Dev Supervisor David Doepp, we explored the use of physically based Fresnel models, with accurate

metal support. �is approach did not have wide support across other shows because the controls for physically

based Fresnel were quite complex and did not deliver a compelling enough bene�t on predominatly dielectric

opaque assets in most of our �lms at the time. Moreover, at the time, the lighting models and light material

interactions we were able to model in D_RENDER for glossy re�ections were still in early development. With so

many approximations being made to solve the rendering equation, making the BRDF Fresnel term more accurate

alone would not have delivered a comprehensive improvement on the look of assets or characters. However, the

process taught us much about the importance of using more physically based principles in modeling material

appearance, as well as the importance of working with artists to understand the level of controls they need.

With Rise of the Guardians (2009–2011), the VFX supervisor David Presco� and Look Dev Supervisor Andy Har-

beck were very motivated to work with R&D on the development of character shaders that were grounded in

physical principles, in order to achieve the “magical realism” look of the �lm. Inspired by Donner and Jensen’s

work on multi-layered translucent materials [DJ05], we developed a three-layer skin shading model that al-

lowed artists to have separate controls for epidermis and dermis. We also developed a physically based eye

shading model, which allowed our animated characters to have eyes with more depth and realism. For hair, we

implemented the Marschner hair shading model [Mar+03] with a more intuitive transmission and glint term.

However, one signi�cant factor to remember is that, for all of these shaders, we focused on the accurate modeling

of the interaction of direct lighting with the surface material. �ere was no consideration yet to accurately model

the interaction of these materials with indirect lighting.

Concurrent to the progress on character shaders by the shading team, Eric Tabellion lead the rendering devel-

opment of Point-Based Global Illumination (PBGI) solutions that he presented in the Global Illumination Across
Industries SIGGRAPH 2010 Course [Kři+10]. �is work leveraged an importance-sampled Ward BRDF and di-

rectional importance mapping techniques for PBGI octree traversal to enable e�cient and accurate modeling of

hard surface re�ections under IBL-based area and environment light sources.

For �e Croods (2009–2013), Head of Lighting Mark Edwards lead his lighting supervisors to develop and deploy

3

Figure 5: Rise of Guardians: �is fantasy �lm marked a milestone in shading at DreamWorks, by establishing a set of physically based

character shaders for skin, hair and eyes.

an IBL-based lighting rig using point-based occlusion and point-based indirect lighting computation with glossy

re�ection. �e simpli�ed lighting setup worked consistently on both the characters’ skin and environment

elements such as leaves, which was very important to the look of the �lm set in a natural environment. However,

we could not use the IBL-based lighting rigs on hair or fur assets because there was no known technique for

importance sampling of hair at the time.

In the summer of 2011, Jiawei Ou and Feng Xie started research on importance sampling of the Marschner hair

model. Eric and the render team had developed a clean library interface for building BSDF models required for

physically based materials. In 2012, leveraging this API, we integrated and deployed importance-sampled hair

glossy re�ection under environment lighting [Ou+12]. It was �rst used for Astrid in How to Train Your Dragon 2.

Figure 6: Le�: �e natural outdoor lighting style of �e Croods lends itself well to physically based lighting using IBL. Right: Astrid in How
to Train Your Dragon 2 was the �rst DreamWorks animation character to use IBL based lighting on glossy hair.

4

A�er �e Croods, IBL-based light rigs were used across all of our shows. However, in terms of re�ection models

used for indirect lighting computation, we still had a lot of challenges: energy conservation, consistency, etc. One

part of these challenges was PBGI as a solution to lighting transport, which was inherently still an approximation.

�e other part was the architecture constraint of the built-in indirect di�use lighting integration in our PBGI

system, which was based on the core assumption that each shading microfacet had a hemispherical di�use

shading model. �e limitation of our PBGI rendering implementation in its ability to emulate indirect lighting

transport accurately, and the so�ware complexity of a feature-rich scanline renderer that was now 15 years old,

made it more and more di�cult to create and extend physically plausible material shaders and lighting models.

Hair sca�ering in particular became quite very expensive with PBGI.

Outside of DreamWorks, a revolution was happening in the world of production rendering [Kel+15]. Path tracing

started with Arnold, then spread to Disney’s Hyperion, Renderman’s RIS, and Weta’s Manuka. Accordingly, in

2014, Eric Tabellion and Brian Green lead a small team of developers to build a completely new path tracing

renderer, Moonray, at DreamWorks. �is renderer uses unidirectional path tracing with next event prediction,

as described in [PJH16]. It fully supports physically based light transport, with the exception of caustic light

paths. �e Moonray renderer has a built-in set of importance-sampled lighting models; a library of (and a C++

API for extending) importance-sampled BSDFs, including all glossy re�ection and refraction models described

in [Wal+07], as well as our importance-sampled Marschner hair model [Ou+12]. Like D_RENDER, Moonray has

a C++ shading API for materials and procedural shaders; unlike D_RENDER, Moonray’s material shaders return

a BSDF closure to the renderer instead of performing the lighting integration within the material shader. �e

actual lighting and material interaction and integration is computed by the path integrator of the renderer.

2 DWA PHYSICALLY BASED SURFACE MATERIAL

Starting in the fall of 2015, we had the opportunity to design and develop a new set of physically based production

shaders for the Moonray renderer. We will introduce our design philosophy for the material shaders and brie�y

discuss their features, as well as our design and implementation of our material layering system.

2.1 Design Motivation

In designing our material shaders the primary goals included building a small set of materials that are as simple

as possible to use individually, and supporting the ability to layer these materials into networks to enable the

creation of more complex and varied looks. In this section we examine some of the bene�ts and drawbacks of

several common approaches.

So-called “uber materials” are traditionally full-featured, multi-model shaders that are capable of representing

several di�erent common material types (metal, glass, plastic, etc.). �e artist de�nes the type of material being

represented by specifying a particular combination of parameters. With texture mapping the artist can vary the

surface characteristics (color, roughness, shading normal, etc.), but importantly can also vary the type of material

being represented over the surface. �is native capability to spatially vary the type of material represented

without requiring a material layering system makes the uber material an a�ractive option.

�ere are several design and work�ow challenges associated with uber materials. An uber material can in some

ways be thought of as a grab-bag of shading features, and the burden is on the artist to choose which features

5

are appropriate for the targeted material type. �e number of a�ributes required to o�er this �exibility can

be cumbersome if not overwhelming to the artist. It may be di�cult for the developer to choose reasonable

default values for each of these a�ributes or to limit their values to an appropriate range, as it is not known at

development time what type of material the artist will a�empt to represent.

Another class of material shaders stands in contrast with the uber material, with each shader presenting a single

shading model that is designed to represent a single real-world material type. With these specialized materials,

while the surface characteristics can also be spatially varied using texture maps, the material type itself cannot.

To overcome this limitation, these shaders o�en rely on an accompanying material layering system in order to

represent compound materials or complex surfaces.

�is class of limited-purpose, specialized materials o�ers an advantage in that the shaders can expose a stream-

lined and intuitive set of a�ributes, and because the type of material being represented is known in advance,

reasonable defaults can be chosen. Such materials encourage proper usage due to their simplicity, and the valid

range of values for any physical parameter is be�er understood. For creating simple looks, these single-model

materials are in many ways preferable to the uber material.

One common functional similarity between the uber material and a material layering system is that both allow

the artist to vary or blend the type of material being represented over di�erent areas of the same surface. While

the uber material allows for this implicitly, it may require potentially complex texture map networks, which can

be di�cult to paint and maintain. On the other hand, a material layering system allows for a simpli�ed and

non-destructive work�ow, and each material being layered can easily be viewed and adjusted independently.

An interesting quality of the uber material is that once it has been designed and developed, its structure and

behavior are then well known, with a �xed set of potential closures that will be produced. �ese closures will be

de�ned in such a way that the succession of light interactions between lobes is �xed, and the Fresnel behavior is

well understood. �is advanced knowledge of the foundation makes ensuring energy conservation a manageable

task for the developer, regardless of how the particular instance of the material is parameterized by the artist.

Additionally, complex and compound looks can be authored without signi�cant rendering performance impact

as it is all handled within a single material. A well-wri�en uber material shader can implicitly and e�ciently

blend between the supported shading models while behaving plausibly and maintaining energy conservation.

While designing and implementing a robust and e�cient uber material is non-trivial, the challenge of building a

robust layering system that can e�ciently handle the layering of arbitrary material types with di�ering closure

con�gurations and Fresnel behaviors while maintaining energy conservation is even more daunting. In a Monte

Carlo ray tracing framework, BSDF sampling e�ciency is very important, and implementing a naive layering

system could result in long render times for production. If each material being layered produces its own set

of weighted closures, the total number of closures can quickly add up and cause performance issues during

integration.

2.2 Design and Implementation of Material Layering

Our solution builds on the parameter blending approach presented in Disney’s “principled” layering system

[Bur12] and a�empts to leverage the strengths of each of the aforementioned approaches. At the core is a li-

brary with a base class uber material, which is capable of modeling and mixing several common material types.

We derive from this base class several specialized materials, each of which exposes only the relevant features and

6

Figure 7: �ree di�erent looks created using our layering system: wax over gold, paint over steel and dust covered glass.

a�ributes for representing that particular material type. Layering is facilitated by a simple Layermaterial, which

provides “A over B” functionality with a single alpha mask input. Our initial implementation includes the fol-

lowing specialized materials for several common material types: Metal, Refractive, and Solid Dielectric.

�ese three materials can be used independently or layered together into arbitrarily deep networks. Layering is

achieved by spli�ing the shading process into two distinct stages: parameter resolution and closure creation.

During the �rst stage, starting at the top layer material, each material in the network potentially evaluates all

of its a�ributes and texture maps in top-down depth-�rst order. �e Layer material’s mask is evaluated �rst,

and each of the two sub-materials are then potentially evaluated as needed. �e resulting parameters are then

blended together using linear interpolation into one set of parameters. �is process continues at each node in

the hierarchy until one �nal set of blended parameters has been resolved for the underlying base class uber

material. �is lazy evaluation of the material and map network means that only a�ributes and texture maps that

are needed are evaluated.

In the second stage, one set of closures is created and con�gured using the �nal set of parameters. In this way,

the entire material network is e�ectively collapsed at shading time into a single instance of the underlying uber

material.

2.3 Shading Features of DWA Physical Materials

Figure 8: DWA Physical Material examples: metal (copper), opaque dielectric (plastic), clearcoated opaque dielectric (wood), refractive

dielectric.

At DreamWorks Animation, we create movies with a wide variety of looks, ranging from fairly realistic to

strongly stylized. In any animated feature, the style is heavily driven by character and environment design,

color choices, animation, textural complexity, and creative lighting, and not strictly by material response, where

7

consistent behavior is perhaps most important. In designing the features of our new material shaders, we have

generally strived for simplicity and out-of-the-box physical behavior over full artistic freedom, and have been

very selective when it comes to exposing any feature or control that might cause unpredictable behavior during

lighting. Our production teams fully support this strategy, as we a�empt to strike a balance that allows us to

reap the full bene�ts of physically based shading, while not being forced to compromise artistic control by its

constraints. We anticipate that our materials will continue to evolve to �t the needs of each new production,

and that we will likely discover cases where bending the rules is necessary to achieve stylistic goals.

Our three layerable material shaders each present a streamlined set of features that is appropriate for the asso-

ciated material type. Each is designed to require minimal handwork by the artist to achieve a plausible look:

• Metal is the simplest of our specialized materials. �e anisotropic Cook-Torrance microfacet model with a

Beckmann distribution [Wal+07], is paired with conductor Fresnel behavior, which is parameterized using

the artist-friendly metallic re�ectivity and edge tint colors presented in [Gul14].

• Refractive also uses an anisotropic Cook-Torrance microfacet model with a Beckmann distribution for

the primary specular lobe. �e dielectric Fresnel is parameterized by a non-mappable refractive index

control that has a default value of 1.5. Mirror re�ection, glossy re�ection and transmission are sup-

ported with a single roughness a�ribute that controls both e�ects. We also provide a separate, op-

tional transmission refractive index control to decouple the bending of light from the re�ectiv-

ity, which allows for non-physical artistic control for certain objects, such as eyeglasses. Additionally,

a transmission color allows for tinting the transmi�ed light, while support for true volumetric absorp-

tion is provided via a separate volume shader.

• Solid Dielectric shares the same specular re�ection model and a�ributes as the Refractive material.

For di�use re�ection, we provide albedo, scattering radius and scattering color a�ributes. When

scattering radius is set to 0, a Lambertian BRDF is used. When scattering radius is perceptible, a

BSSRDF is used, with support for the dipole model [Jen+01] and the empirical di�usion pro�le described

in [Chr15]. Additionally, a di�use transmission feature is available, with a single color a�ribute (��ingly

named diffuse transmission) to control it.

Several additional features are supported across all three models. First is an optional zero thickness clearcoat

layer, with physical refraction and dielectric Fresnel behavior. A�ributes are exposed to specify the refractive

index, thickness, and color a�enuation due to absorption within the clearcoat layer. Next, an artist-friendly

iridescence feature is controlled by an additional set of a�ributes. Finally, an emission a�ribute allows the

artist to specify additional energy that is to be emi�ed by the material.

Each material also exposes a special specular control a�ribute, in [0, 1], which defaults to 1. �is a�ribute

can be used to “kill” specular re�ection in areas where certain otherwise unrepresented micro-scale geometric

surface details (such as a deep pits or gaps) should result in no visible specular re�ection. It is intended that this

a�ribute be mapped with binary 0|1 values in order to maintain a plausible look.

With our system, our artists enjoy a work�ow that involves the layering of multiple instances of our discrete,

specialized and streamlined materials to form branchable, compound material networks. Each material in the

network hierarchy is valid as a stand-alone material, with full support for spatially varying surface properties.

At shading time, each network is reduced to an e�cient-to-render instance of our underlying advanced uber

material. Future work includes extending our layering system and uber material to include support for our

fabric, velvet and skin shading models.

8

Figure 9: Characters and �nal logo rendered with gli�er shader.

3 DWA GLITTER

�e production designer for Trolls had a unique vision for the world in which the happy and music-loving trolls

lived: the troll village is lush, fuzzy and translucent. Into this so� and translucent world, our designer wanted

to add even more magic and happiness, and so that is where we needed gli�er — lots of gli�er!

In [Jak+14] and [AK16], the authors described algorithms to generate and render stochastic �akes with density

N , in the order of 10
6

to 10
8

�akes per unit area; these solutions couldn’t be directly applied to Trolls’ gli�er

because the density of our gli�er �akes was orders of magnitude smaller, ranging from 10
2

to 10
3
. At this density

scale, the gli�er �akes have visible structure and our art direction wanted control over the color and size of the

individual �akes on the main characters. To meet the artistic needs for gli�er on Trolls, we developed a gli�er

�ake material that gave our artists the desired controls, while adhering to the principles of a physically plausible

material and also remaining e�cient to render.

3.1 Algorithm Overview

A fundamental requirement to any gli�er �ake appearance model is the distribution of the �akes. �e stochastic

distribution algorithms described in [Jak+14] and [AK16] create a uniform distribution of high density �akes

in texture space. �e dependency on texture space can lead to stretching artifacts on deformed characters.

Additionally, those algorithms assume there is no visible structure to the gli�er: each stochastically distributed

�ake is either entirely inside or outside of the pixel footprint, which is a reasonable assumption for �akes with

sub-pixel footprint.

For Trolls, we wanted gli�er on characters undergoing extreme animation. We also wanted �akes that were

roughly the size of a pixel, where the area coverage of an individual �ake within a pixel was important to

capture the �ake size and appearance. For these reasons, we chose a well-known 3D noise function with easy

to control density parameters as the foundation of our gli�er �ake distribution.

Our Noise Worley implementation populates a 3D grid with a Poisson distribution of points, without the need

for heavy precomputation or storage. �e original algorithm in [Wor96] provides an e�cient method to query

the nearest four feature points for any given location in 3D space. Given the closest four feature spheres — each

corresponding to a gli�er �ake — our �rst priority is to determine the coverage of each �ake within the pixel or

shading footprint.

9

3.2 Coverage of each Gli�er Flake Within a Shading Disk

Figure 10 shows how we compute the coverage of a gli�er �ake within a shading disk, where the gli�er �ake is

represented as a disk cut from a feature sphere by the shading plane.

Figure 10: Computing sphere to disk intersection.

Shading point query setup: we transform the shading polygon to a disk on a noise-space plane, with center

Cs, normal Ns and radius rs. For each feature sphere with center Cfs and radius rfs, compute the desired coverage

as follows:

1. Compute the �ake disk (radius rf , center Cf) from the feature sphere and the shading plane:

rf =
√

rfs

2 − dist2, (1)

Cf = Cfs + dist Ns, (2)

where dist = (Cs − Cfs) · Ns.

2. Determine the coverage between the shading disk and the �ake, based on the overlap length L:

coverage =
L

2 rs

, (3)

where L = rs + rf − ‖Cf − Cs‖.

Note that |dist | < rfs is required for the feature sphere to intersect the shading plane and create a valid gli�er

disk, and L needs to be clamped to a maximum of 2 min(rs, rf).

3.3 Gli�er Flake BRDF

A�er resolving the coverage of the �akes that overlap each shading polygon, we are ready to create our glit-

ter �ake BRDF. Each visible �ake is instantiated as a GGX microfacet lobe [Wal+07], with a Schlick Fresnel

term [Sch94], using the computed �ake color as incident specular color, and �ake normal as the microfacet nor-

mal. �e gli�er �ake BRDF can have up to four �akes, each one a GGX lobe, with the weight (scale) set to the

�ake coverage.

10

Energy conservation and reciprocity of the gli�er �ake BRDF is ensured by the fact it is a linear combination

of GGX lobes, which are both energy conserving and reciprocal. To e�ciently sample the gli�er �ake BRDF,

we �rst choose a �ake with probability proportional to its coverage, then sample the selected �ake using the

importance-sampling strategy for the GGX microfacet lobe [Wal+07].

As a result, we have created a physically plausible material model for gli�er �akes that is both energy conserving

and e�cient to sample and evaluate. We have integrated this BRDF model into our scanline-based production

renderer, with extensions for supporting physically based lighting and shading. More recently we have also

integrated the gli�er �ake BRDF into our new path tracing renderer.

3.4 Gli�er Flake Controls

Density and size control: the size of each Worley sphere is proportional to the density, as the default point

cloud packs the space without overlap. �e default size of each feature sphere in noise space is 1; this size scale

allows artists to adjust the �ake size once the density control is set to the desired level.

Figure 11: Gli�er material with increasing density from 500 to 8000, roughness = 0.3.

Flake color: �e color of each �ake is determined either through a user-speci�ed ramp or a randomized color.

Both can be tinted by a user-speci�ed color.

Flake roughness: �e normal of each visible �ake is determined by sampling the GGX distribution [Wal+07]

centered around the shading normal, with a user-speci�ed �ake roughness.

Figure 12: Gli�er material with increasing roughness from 0.1 to 0.5, density = 4000.

All of the controls (density, size, color and roughness) can be made spatially varying using input textures, if

desired.

11

3.5 Consistent Gli�er Flakes for Deformed Characters

�e gli�er �akes looked great on character spins, but as the characters danced, the gli�er �akes started to swim

on their skin. We solved this problem by computing the �ake position in reference space, while the �ake size

is still computed using the deformed shading micropolygon size so that the �akes don’t look stretched as the

underlying skin deforms.

3.6 LOD Generalization for Gli�er Flakes

�e gli�er shader is e�cient to render and easy to control, but when the camera moves away from the gli�er-

shaded assets and characters, we need to solve the “many more than four �akes per pixel” problem.

We can extend our algorithm to support gli�ery looks with density N , ranging from 10
2

to 10
8

by modifying our

Noise Worley algorithm to return all of the spheres within the noise cloud that overlap the shading micropoly-

gon. �e regular grid structure of the noise cloud allows us to quickly identify all of the grid cells that overlap

the bounding sphere of the shading polygon. �en, within each grid cell, we perform our e�cient coverage test

to determine if each feature sphere overlaps with the shading polygon disk and return the coverage and normal

for each visible �ake. We traverse the grids in near to far wavefront order, so we can keep track of the nearest

four visible �akes easily.

To construct the generalized gli�er BRDF, we �rst create a GGX microfacet lobe for each one of the nearest four

visible �akes, f[1,4]. �en, we create a separate mirror-�ake BRDF [AK16] using the remaining visible �akes,

f[5,K] (where K is the total number of �akes covering the shading micropolygon), with the weight of the mirror-

�ake BRDF set to 1−
∑

4

i=1
coverage(fi). When the estimated �ake count within a shading polygon falls within a

user-con�gurable range (our default is [500, 2000]), we fade the mirror-�ake BRDF to a GGX microfacet lobe of

the same roughness, as described in [AK16]. As a result, we have a gli�er BRDF solution that supports gli�ery

�akes with density N ranging from 10
2

to 10
8
, as shown in Figure 13.

�e generalized gli�er �ake BRDF, with support for the full density range, remains energy conserving and

reciprocal, because it is still a linear combination of energy conserving and reciprocal BRDF models, scaled by

normalized weights. To e�ciently sample and evaluate the generalized gli�er BRDF, we rely on the e�cient

sampling and evaluation strategy of each component: the gli�er �ake BRDF from Section 3.3, the mirror-�ake

BRDF from [AK16], and the GGX microfacet lobe from [Wal+07].

Figure 13: Gli�er material with increasing density from 10
3

to 10
7
, roughness = 0.3.

12

3.7 Production Results for Gli�er

We developed a gli�er material shader using our gli�er BRDF and used it extensively on the movie Trolls. �e

main character, Poppy, had gli�er on her cheeks and a key character, Guy Diamond, was covered in gli�er, as

were many secondary and crowd characters. To allow for maximum �exibility, look development artists layered

the gli�er material shader on top of the baseline surface or hair material. Where applicable, the lighting team

sometimes created separate gli�er AOVs to accentuate them during compositing, but in general gli�er was lit

using the same lighting rig as the underlying surface. �is is directly due to our gli�er material model being

physically plausible. As such, it exhibits consistent behavior under di�erent lighting conditions, and its lighting

response is also consistent with other physically plausible materials at DreamWorks.

In the future, we would like to evaluate Gulbrandsen’s Artist Friendly Metallic Fresnel [Gul14] with our gli�er

BRDF, for metallic �akes.

Figure 14: Generic gli�ery Trolls rendered with our gli�er shader.

4 DWA FABRIC MODELING

Since Shrek 2, DreamWorks artists have used the fabric model developed by [GD04] extensively on cloth ma-

terial shading. Even a�er we developed the physically based micro-cylinderical cloth model by [Sad+13], they

continued to prefer the intuitive control of the DreamWorks fabric shading model (also a cyindrical shading

model), with its easy to use artistic controls for highlights and highlight directions.

In this section, we will present our approach to making this much-loved, production-oriented fabric shading

model physically plausible, so we can use it within the framework of a physically based renderer that requires

its BRDF models to be energy conserving and, ideally, reciprocal as well. We also cover an accurate importance

sampling algorithm for this fabric shading model that makes it e�cient to render within a path tracer.

13

4.1 DWA Fabric BRDF

As described in [GD04], DreamWorks’ fabric shading model considers the class of fabrics composed of cylindri-

cal, dielectric �bers that are woven together. We assume that individual �bers are not discernible and instead

choose to model the light response as the aggregate light re�ected from a small patch of �bers. Marschner et

al. [Mar+03] showed that light incident on a dielectric cylinder is re�ected in a specular cone along the mirror

vector with respect to the tangent. Our BRDF models this specular cone with the following equation:

S(θi ,ϕi ,θo ,ϕo) = (1 − | sinθh |)
n , (4)

where θh = (θo + θi)/2, and θ is the angle with respect to the normal plane.

4.2 Energy Conservation for Fabric BRDF

In order for our fabric model to be physically plausible, we need to ensure that it is energy conserving. We

compute the normalization factor for our BRDF by integrating it over the outgoing hemisphere for a maximally

re�ective incident vector. For a cylindrical �ber, the maximally re�ective incident vector will always be located

in the normal plane, thus θi = 0 and therefore θh = θo/2. �e normalization integral over the entire outgoing

hemisphere is

Io =

∫
Ω
(1 − | sinθh |)

n
dωo . (5)

�is integral can be evaluated using a combination of binomial expansion and a recursive formulation for the

integral of an exponential sinusoid. �e �nal expression, which can be evaluated analytically for any given

exponent, comes out to be

Io = 4π
n∑

k=0

(
n

k

)
(−1)k

(∫ π
4

0

sin
k θh dθh − 2

∫ π
4

0

sin
k+2 θh dθh

)
. (6)

�e reciprocal, 1/Io , is the normalization factor for the BRDF. In practice, we precompute the normalization

factors for a predetermined range of exponents. In our tests, a range of 0 to 30 for the exponent was more than

su�cient to express the spectrum of fabrics required in our work�ow. To allow for intuitive user control, we

expose a fabric roughness α parameter that is internally converted to exponent n using the following equation:

n = ceil(1 + 29 (1 − α)2). (7)

Figure 15 shows the results of white furnace tests, where we see that total re�ected energy increases with

roughness for the unnormalized fabric BRDF, while the normalized fabric BRDF test results show consistent

re�ected energy across all roughness values.

4.3 Importance Sampling of Fabric BRDF

To sample the fabric BRDF e�ciently, we �rst select θh based on the following PDF:

p(θh) =
n + 1

π
(1 − sinθh)

n . (8)

14

Figure 15: Furnace tests of the fabric model with roughness α ranging from 0 to 1, before and a�er normalization.

�is PDF can be accurately sampled using

θh = sin
−1(1 − ξn+1). (9)

We then convert θh to θi , using θi = 2θh − θo to compute the sample direction. Additionally, we divide the PDF

of θh by the Jacobian of the inversion, in order to determine the PDF of θi :

p(θi) = p(θh)
dωh

dωi
. (10)

Finally, in [Wal+07], the Jacobian to convert the sampling from the half vector to the incident vector was shown

to be
dωh
dωi
= 1

4 (ωi ·ωh)
, so the PDF of θi is

p(θi) =
n + 1

4π (ωi · ωh)
(1 − sinθh)

n . (11)

Our sampling algorithm is highly e�cient because it is based on the exact inversion of the analytical integral of

the PDF. Figure 16 shows a simple cylinder rendered with our fabric material model with low roughness. In this

case, using uniform sampling requires 6x to 8x the number of samples to converge to a clean render compared

to using our importance sampling algorithm. So, using our importance sampling algorithm translates to nearly

a 8x speedup in a path tracer.

Figure 16: Uniform versus importance sampling of our fabric BRDF.

15

4.4 Results for Fabric BRDF

By examining the mathematical characteristics of an empirical fabric shading model, we developed an artist-

friendly and physically plausible fabric BRDF, with e�cient closed-form solutions for computing its normaliza-

tion factor for energy conservation and for importance sampling the BRDF. Figure 17 shows a variety of cloth

appearances — ranging from silk to velvet — created with our fabric BRDF (under the same lighting, with two

raytrace bounces).

Figure 17: A variety of fabric appearances achieved using artist-speci�ed inputs for fabric thread direction, orientation, roughness and color.

5 SUMMARY

From Antz in 1998 to Boss in 2017, PDI and DreamWorks Animation Studios have used a multi-pass scanline

renderer D_RENDER to create over 25 feature �lms. Along the way, motivated by the desire for lighting con-

sistency and e�ciency, we a�empted to achieve increasing levels of physical accuracy in our rendering and

shading models; only to reach a ceiling in both computation and work�ow complexity as we tried to expand the

capability beyond what was possible in the various lighting and shading approximations we adopted. We �nally

transitioned to a path-traced renderer in 2016, and developed a suite of physically plausible material shaders

ranging from basic hard surfaces to more specialized shading models for fabric, gli�er and hair. Our users have

fully embraced the new physically based renderer and shaders. �ey like the interactive work�ow, the intuitive

material controls, and the improved consistency for looks under di�erent lighting conditions. We continue to

work with them in re�ning the controls to achieve artistic �exibility while retaining the fundamental principles

of physically plausible shading.

REFERENCES

[AK16] A. Atanasov and V. Koylazov. “A Practical Stochastic Algorithm for Rendering Mirror-like Flakes”.

In: ACM SIGGRAPH 2016 Talks. SIGGRAPH ’16. Anaheim, California: ACM, 2016. url: https://

16

https://docs.chaosgroup.com/display/RESEARCH/A+Practical+Stochastic+Algorithm+for+Rendering+Mirror-Like+Flakes
https://docs.chaosgroup.com/display/RESEARCH/A+Practical+Stochastic+Algorithm+for+Rendering+Mirror-Like+Flakes

docs.chaosgroup.com/display/RESEARCH/A+Practical+Stochastic+Algorithm+for+

Rendering+Mirror-Like+Flakes.

[Bur12] B. Burley. “Physically Based Shading at Disney”. In: Practical Physically Based Shading in Film and
Game Production, ACM SIGGRAPH 2012 Courses. SIGGRAPH ’12. Los Angeles, California: ACM, 2012.

url: http://selfshadow.com/publications/s2012-shading-course/.

[Chr15] P. H. Christensen. “An Approximate Re�ectance Pro�le for E�cient Subsurface Sca�ering”. In: ACM
SIGGRAPH 2015 Talks. SIGGRAPH ’15. Los Angeles, California: ACM, 2015.

[DJ05] C. Donner and H. W. Jensen. “Light Di�usion in Multi-layered Translucent Materials”. In: ACM
SIGGRAPH 2005 Papers. SIGGRAPH ’05. Los Angeles, California: ACM, 2005.

[GD04] R. Glumac and D. Doepp. “Generalized Approach to Rendering Fabric”. In: ACM SIGGRAPH 2004
Sketches. SIGGRAPH ’04. Los Angeles, California: ACM, 2004.

[Gul14] O. Gulbrandsen. “Artist Friendly Metallic Fresnel”. In: Journal of Computer Graphics Techniques
(JCGT) 3.4 (Dec. 2014). url: http://jcgt.org/published/0003/04/03/.

[Jak+14] W. Jakob, M. Hašan, L.-Q. Yan, J. Lawrence, R. Ramamoorthi, and S. Marschner. “Discrete Stochastic

Microfacet Models”. In: ACM Trans. Graph. 33.4 (July 2014).

[JB02] H. W. Jensen and J. Buhler. “A Rapid Hierarchical Rendering Technique for Translucent Materials”.

In: Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques. SIG-

GRAPH ’02. San Antonio, Texas: ACM, 2002.

[Jen+01] H. W. Jensen, S. R. Marschner, M. Levoy, and P. Hanrahan. “A Practical Model for Subsurface Light

Transport”. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Tech-
niques. SIGGRAPH ’01. New York, NY, USA: ACM, 2001.

[Kel+15] A. Keller, L. Fascione, M. Fajardo, I. Georgiev, P. Christensen, J. Hanika, C. Eisenacher, and G. Nichols.

“�e Path Tracing Revolution in the Movie Industry”. In: ACM SIGGRAPH 2015 Courses. SIGGRAPH

’15. Los Angeles, California: ACM, 2015.

[Kři+10] J. Křivánek, M. Fajardo, P. H. Christensen, E. Tabellion, M. Bunnell, D. Larsson, and A. Kaplanyan.

“Global Illumination Across Industries”. In: ACM SIGGRAPH 2010 Courses. SIGGRAPH ’10. Los An-

geles, California: ACM, 2010.

[Mar+03] S. R. Marschner, H. W. Jensen, M. Cammarano, S. Worley, and P. Hanrahan. “Light Sca�ering from

Human Hair Fibers”. In: ACM SIGGRAPH 2003 Papers. SIGGRAPH ’03. San Diego, California: ACM,

2003.

[Ou+12] J. Ou, F. Xie, P. Krishnamachari, and F. Pellacini. “ISHair: Importance Sampling for Hair Sca�ering”.

In: ACM SIGGRAPH 2012 Talks. SIGGRAPH ’12. Los Angeles, California: ACM, 2012.

[PJH16] M. Pharr, W. Jakob, and G. Humphreys. Physically Based Rendering: From �eory to Implementation.

3rd. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2016.

[Sad+13] I. Sadeghi, O. Bisker, J. de Deken, and H. W. Jensen. “A Practical Microcylinder Appearance Model

for Cloth Rendering”. In: ACM Trans. Graph. 32.2 (Apr. 2013).

[Sch94] C. Schlick. “An Inexpensive BRDF Model for Physically-based Rendering”. In: Computer Graphics
Forum 13.3 (1994).

[TL04] E. Tabellion and A. Lamorle�e. “An Approximate Global Illumination System for Computer Gener-

ated Films”. In: ACM SIGGRAPH 2004 Papers. SIGGRAPH ’04. Los Angeles, California: ACM, 2004.

[Wal+07] B. Walter, S. R. Marschner, H. Li, and K. E. Torrance. “Microfacet Models for Refraction �rough

Rough Surfaces”. In: Proceedings of the 18th Eurographics Conference on Rendering Techniques. EGSR’07.

Grenoble, France: Eurographics Association, 2007.

[Wor96] S. Worley. “A Cellular Texture Basis Function”. In: Proceedings of the 23rd Annual Conference on
Computer Graphics and Interactive Techniques. SIGGRAPH ’96. New York, NY, USA: ACM, 1996.

17

https://docs.chaosgroup.com/display/RESEARCH/A+Practical+Stochastic+Algorithm+for+Rendering+Mirror-Like+Flakes
https://docs.chaosgroup.com/display/RESEARCH/A+Practical+Stochastic+Algorithm+for+Rendering+Mirror-Like+Flakes
https://docs.chaosgroup.com/display/RESEARCH/A+Practical+Stochastic+Algorithm+for+Rendering+Mirror-Like+Flakes
http://selfshadow.com/publications/s2012-shading-course/
http://jcgt.org/published/0003/04/03/

APPENDIX A - NORMALIZING THE DREAMWORKS FABRIC BRDF

When normalizing a BRDF, we are interested in the maximum re�ected energy for any given incident light

direction. �e normalization integral for our cloth BRDF can be wri�en as

Io =

∫
Ω
(1 − | sinθh |)

n
dωo . (12)

�is integral can be expressed in spherical coordinates as

Io =

∫ π

0

∫ π
2

− π
2

(1 − | sin(θh)|)
n

cosθo dθodϕo . (13)

Since our ϕ plane is perpendicular to the tangent vector, this conversion includes a cosine term instead of the

sine term. We can integrate the independent ϕ term and remove the absolute operator using the symmetry of

the cloth BRDF. With these changes, the integral becomes

Io = 2π

∫ π
2

0

(1 − sinθh)
n

cosθo dθo . (14)

For a cylindrical BRDF, the maximum re�ected light energy occurs when the incoming light vector is in the

normal plane. �is makes θi = 0, and θo = 2θh . Using this relation, we can express the integral in terms of θh :

Io = 2π

∫ π
4

0

(1 − sinθh)
n

cos(2θh) d(2θh),

= 4π

∫ π
4

0

(1 − sinθh)
n(1 − 2 sin

2 θh) dθh . (15)

We can use binomial expansion to expand the (1 − sinθh)
n

term as

(1 − sinθh)
n =

n∑
k=0

(
n

k

)
(−1)k sin

k θh . (16)

�e integral can now be wri�en as

Io = 4π

∫ π
4

0

(n∑
k=0

(
n

k

)
(−1)k sin

k θh

)
(1 − 2 sin

2 θh) dθh . (17)

Moving the integral inside and factoring out the two terms, we get an expression than can be evaluated as a

summation over the di�erence of integrals of two sine functions:

Io = 4π
n∑

k=0

(
n

k

)
(−1)k

(∫ π
4

0

sin
k θh dθh − 2

∫ π
4

0

sin
k+2 θh dθh

)
. (18)

�e integral of sin
k x has a well-studied recursive form:∫

sin
k x dx = −

(
1

k
sin

k−1 x cosx +
k − 1

k

∫
sin

k−2 x dx

)
. (19)

�e binomial expansion, along with the above recursive evaluation, results in an integral that can be evaluated

analytically for any given exponent, giving us the maximum re�ected energy Io a given exponent. �e reciprocal

of Io is our normalization factor.

18

APPENDIX B - IMPORTANCE SAMPLING THE DREAMWORKS FABRIC BSDF

�e BRDF can be e�ciently sampled by choosing a half vector with PDF p(θh) and using change of variables to

convert this PDF to p(θi). We select a half-angle vector based on the equation

p(θh) = K (1 − | sinθh |)
n , (20)

where K is a normalization factor that we need to determine. For it to be a valid PDF, we need to ensure that∫
Ωh

p(θh) dωh = 1, (21)

which expands to

K

∫ π

0

∫ π
2

− π
2

(1 − | sinθh |)
n

cosθhdθhdϕh = 1. (22)

Using the the symmetric property of the function around θh = 0, we obtain

2π K

∫ π
2

0

(1 − sinθh)
n

cosθhdθh = 1. (23)

Substituting t = sinθh yields

2π K

∫
1

0

(1 − t)ndt = 1,

2π K
1

n + 1

= 1. (24)

�us K = n+1

2π , so our PDF is

p(θh) =
n + 1

2π
(1 − | sinθh |)

n . (25)

Using CDF inversion, we can generate sampling vectors accurately using

θh = ± sin
−1(1 − ξ

1

n+1

1
),

ϕh = πξ2. (26)

To be a valid PDF with respect to the sca�ering vector ωi , we need to include the Jacobian of the half direction

transform, as described in [Wal+07]:

p(θi) = p(θh)

∂ωh

∂ωi

. (27)

19

	Brief Historical Overview
	DWA Physically Based Surface Material
	Design Motivation
	Design and Implementation of Material Layering
	Shading Features of DWA Physical Materials

	DWA Glitter
	Algorithm Overview
	Coverage of each Glitter Flake Within a Shading Disk
	Glitter Flake BRDF
	Glitter Flake Controls
	Consistent Glitter Flakes for Deformed Characters
	LOD Generalization for Glitter Flakes
	Production Results for Glitter

	DWA Fabric Modeling
	DWA Fabric BRDF
	Energy Conservation for Fabric BRDF
	Importance Sampling of Fabric BRDF
	Results for Fabric BRDF

	Summary

