
Hello and good morning, afternoon, evening or night, depending on where 
you’re joining us from. My name is Rob Pieké and, on behalf of my co-
contributors Igor and Will, I’d like to welcome you to a journey through MPC’s 
adoption of physically based shading over the last twenty years. I’ll provide 
some background and context as I quickly cover the years leading up to 2015, 
Igor will talk in depth about the work we’ve done in recent years on hair 
shading, and Will will close with a commentary on where things stand today 
and where we see further challenges slash exciting opportunities for the future.

MPC has been pursuing increasingly physically motivated and grounded 
approaches to shading and rendering for the last fifteen years. This journey has 
involved a constant reassessment of pragmatic decision making based on: the 
computational power available, the way our artists speak about and interact 
with shading, and advances by both academia and elsewhere in the industry. 
So, without any further ado...



Where did it all begin for us? I wasn’t able to track down, with 
any confidence, what software MPC used to render its very 
first image, but I was able to get a 20+ year old email from one 
of our systems engineers where he thanked Pixar for coming 
to visit us and showing us a demo of the latest RenderMan 
release on CD (remember, this is back in 1998).
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Where did it all begin for us?



If you want to know when we adopted a certain advance in 
rendering, look at the RenderMan release notes until that 
feature is mentioned, and you’ll be within a few months. We 
have a track record of being very aggressive in our adoption 
of new releases of RenderMan, generally more so than with 
many other third-party software packages we use. It’s not 
uncommon for us to throw beta versions into production.

I also really want to highlight this slide to be upfront about the 
bias (no rendering pun intended) in this presentation. Some of 
what we say today may be universal, some things might be 
more RenderMan specific, and many may just be the wonky 
and wonderful way we work at MPC.



My memory of the past is probably more romantic than the 
reality of it, but it was for the most part a simpler time. Shaders 
were generally pretty short and not very complicated to write. 
We cheated everything like crazy. There was little to no 
physical motivation behind our shading models at the time; it 
was driven very heavily by artistic intent. I don’t mean to say 
that’s necessarily a bad thing unto itself, but it did have 
consequences.



Irrespective of the shading models, this traditional multi-pass 
approach to rendering, meant we ended up generating a lot 
of byproducts. 



Let’s pretend this is one of the iconic battle shots from MPC’s 
work on Troy. Shadows are pretty critical in selling that the 
Trojan soldiers are actually standing on the ground, and it’s all 
done using depth maps …



… rendering the world from the viewpoint of the light and 
recording the distance between the light and the geometry of 
the scene.



If we focus on just the soldiers, we can see there’s pretty 
sparse coverage of the frame, and this led to the custom 
development of tools …



… which would look at the soldiers one-by-one …



… and figure out their screen-space coverage so we can 
capture them individually.

This is awesome because each map is now quite tight and 
efficient, and we can theoretically reuse a lot of data if a later 
iteration of the render only requires an animation update to a 
single soldier.

This is not-so-awesome because one shadow map has 
suddenly turned into 10 or 100 or 1000, and tracking the 
correspondence between shadow maps and animation 
changes (or lack thereof) is a significant challenge.



In the early 2000s, MPC was already using image-based 
lighting to help our CG content integrate more naturally into 
the filmed content. 



We wrote tools which would decompose light probes into a 
series of directional lights via median cut and similar 
algorithms. So now we’ve got dozens of lights per shot, each 
of which may have several shadow maps. Ultimately this 
transformed the role of a Lighter into a data wrangler needing 
to manage thousands of shadow passes per-frame.

In short, a data management nightmare.



But at least the images looked prettier.

Further complicating the life of our Lighters were the bespoke 
surface shaders with little to no grounding in real-world 
physics. This meant they needed to invest heavily in shot-
specific Look-Dev to ensure not only that individual assets felt 
believable in isolation, but also in relation to neighbouring 
assets. A tree that looked beautiful in one shot might appear 
to be glowing in a different shot. Similarly, a character 
standing beside the tree might be getting darker at the same 
time the tree was getting lighter.



Our road to salvation started 15 years ago, when we got our 
first taste of ray tracing. It also let us start dabbling with ray-
traced shadows and reflections, although in all honesty for 
many many years we still found ourselves using a lot of 
shadow maps for assorted artistic control and performance 
reasons, and just being the devil we already knew.



The most fundamental shift in our approach to rendering came in the form of 
the Physically Based Shading movement around 2010 or maybe a few years 
earlier. In preparation for this presentation, I spent a lot of time trying to figure 
out how to best summarise the impact, and one thing that I kept coming to is 
that it made us more disciplined and able to reason about our materials and 
shading. We started to think more about the area of lights, about energy ... 
really about representing the physical quantities of the real world.

In theory this should make the lives of our artists simpler, and one of our first 
efforts was to pursue materials that were energy conserving, and introduced 
surface shading based on work by Ashikhmin and Shirley, complemented with 
“albedo pump-up” based on work by Neumann et al. This was complemented 
by an in-house framework for importance-sampled materials (where the 
number of reflection/occlusion rays was driven by surface roughness, for 
example). We first used this on 2010’s Clash of the Titans and talked about it 
that year in an Importance Sampling course at SIGGRAPH. I’d encourage you to 
read the notes from that course if you’re interested, and I’m not going to spend 
more time on it here.



Not long after we started our efforts on PBS, Pixar released 
their own framework for physically plausible shaders in 
RenderMan, and we transitioned to use it. This continued our 
trend to embrace ray tracing, and started a movement away 
from bespoke materials and towards more general-purpose 
ones.

Of course nothing good comes for free. Reality is rather 
complicated, and that complexity ends up manifesting itself in 
many places, such as in our shaders. Our main production 
shader at this time went up to about 4,000 lines of code ... just 
for the surface-light interaction; all the pattern generation 
code was in separate co-shaders.



And we ended up trading one data management problem for 
another. RenderMan still wasn’t really designed at the lowest 
level to be the world’s simplest or fastest ray tracer at the 
time, so we had to find ways to get the benefits of indirect 
illumination without brute-force tracing a bajillion rays.



So we’d render direct illumination passes …



… bake that illumination out into point clouds …



… convert those into brick maps …



… And then render again, tracing secondary rays against 
these caches for the bounce lighting. And the result is pretty 
darn good. Especially if we compare this image …



… against the previous one.



But we still have a multi-pass render, with point cloud and 
brick map artefacts along the way.



~5 years ago we had another major paradigm shift in our 
rendering as Pixar added the RIS framework into RenderMan. 
We buried our shadow maps and point clouds and brick maps 
deep in the ground, and embraced the world of single-pass 
path tracing.

This also meant throwing away our entire shading library and, 
for better or worse, starting again from scratch.



Initially we started by building a fairly small but distinct set of 
BXDFs for different material types. We had separate plugins 
for general hard surfaces, cloth, glass, hair, particles, volumes, 
and eyes (which I left off this slide because a photorealistic 
eyeball is a bit gross to look at). These plugins were a 
combination of custom code and work from the RenderMan 
team.



Over time we decided to consolidate our materials (for 
example pulling cloth and glass into our general hard surface). 
This increased the complexity of the remaining BXDFs, but 
made it easier to think about material layering and blending, a 
topic we’ll talk about later.



While our general trend recently has been to move towards 
vendor-provided materials (for example our use of 
RenderMan’s PxrSurface), the glaring exception has been our 
continued investment in custom hair shading.



One of the very first films we rendered using RIS was Disney’s 
2016 movie - The Jungle Book. We delivered this project 
using a custom hair shader based on the popular Marschner 
model although it was largely successful, but had a number of 
limitations that we would like to improve.

Thankfully a new huge show was coming and it was a request 
from production to further improve our fur and hair shading.



For Disney’s The Lion King, we needed something that would 
make the show distinctive in terms of the fur look; the 
progress in shading had to be noticeable. The close-up 
performances meant our curves could no longer look like 
ribbons, and the pale lion fur meant we needed to properly 
investigate the physical properties of hair and colour 
attenuation.



There’s been lots of great research into fur rendering in the last decade, especially in the last five-ish years. 

We spent time to investigate all the works which were done in the last time related to Fur/Hair shading and decided to 

implement quickly what was written in the PBRT supplementary chapter dedicated to that aspect of the shading 
(https://www.pbrt.org/hair.pdf).

Initially we were also very much inspired by the work A Practical and Controllable Hair and Fur Model for Production Path 
Tracing (Chiang) from Disney explained in their 2016 paper. But as soon as prototyping was done and the main points of that 
paper were implemented, we understood that we need something more physically plausible in terms of parameterization, as 
hyper photorealism and physically plausibility of the shading were the main requests.

So we diverged from many aspects of Disney’s work and were mostly focused on the Physically Accurate Fur Reflectance: 
Modeling, Measurement and Rendering, 2015 and An Efficient and Practical Near and Far Field Model, 2017 papers from 
Yan, as these series of papers give a deeper explanation of how fur works and what kind of parameterization should be 
implemented. The provided tables with measured values of different species of animals would give us an initial and 

approximated parameterization which we could then extend in future internal lookdev iterations.
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Ensuring that our curves had a cylindrical (rather than flat) look 
became one of the main request. The coming show supposed to 
have a lot of close ups where we would see individual strands of fur 
and hair.

Longitudinal/Azimuthal roughness became a default request to the 
new shader and was the main means by which we could control all 
the lobes. By this I mean there were no extra roughness values for 
each lobe; all the properties of the consequent lobes were 
computed automatically and had to be be physically plausible. 



Another goal was to make the controls as minimal and easy to 
use as possible. But this couldn’t extend to the point where 
our artist’s creativity was hampered as we had to be able to 
achieve the look of all possible species of animals. 

Natural light scattering and a proper color parametrization was 
requested as well. Using the diffuse lobe as the main lobe to 
set the color of the groom was not acceptable; the color had 
to be accumulated due to the multiple bounces across the 
groom.

All the lobes supposed to be well balanced in terms of energy 
conservation and, of course, the performance of the shader 
had to be as good or better than what we had before.



As mentioned, we’d started our prototype based on PBRT 
supplementary chapter and some of the aspects from 
Disney’s 2016 work.

But we started to get deeper into the subject of fur and began 
analysing what we could improve in terms of physical 
parameterization to get even more realism. We started by 
looking deeper into the study of fur structure and how fur is 
physically composed.



Fur vs Hair structure

This series of images contrasts human hair against the fur of animals.

The two left images show the internal structure and cuticle layer for human hair; the 
four right images highlight the medulla and cuticle layer of animal fur fibres.

Hair and fur share some common structures. They are often cylindrical with some 
eccentricity and, in both cases, there are three main structural layers: 

● the cuticle, which covers fibres with inclined scales

● the cortex which contains nearly all the colored pigments within the fibre

● and the medulla which lies in the centre of the fibre with complex internal 
structure that scatters light

There are also some notable differences. I’ll draw your attention to both the inner 
medulla core (which is quite significant in fur but very small in human hair), and the 
outer cuticle layer (which has more complex structural detail in fur fibres).



Physically Based Parameterization

We decided to get as close as it possible to the parametrization 
described in the An Efficient and Practical Near and Far Field Fur 
Reflectance Model, 2017 paper by Yan and parametrize our medulla 
as a volume based on absorption, scattering coefficients and a 
phase function.



Physically Based Parameterization

We wanted to be able to understand in numbers how fur behaves 
for different species of animals. The table supposed to be a starting 
point for LookDev to further tune.



Our custom fur shader went through two major iterations, which 
you’ll see in a few slides. While they both considered the structure 
of fur to be based off of the previously mentioned components 
(cuticle, cortex, medulla), one of the major differences between 
them was the parameterization of the medulla.

At the beginning for our first iteration, which we call Fur v1, we made 
an assumption about medulla based on a schema from the  paper 
Physically Accurate Fur Reflectance: Modeling, Measurement and 
Rendering, 2015  by Yan paper. We decided to add two extra lobes 
(TTs and TRTs) which had a wider angle of sampling; this allowed us 
to control the scattering over the groom and make look more 
diffusive when it is needed. 



Fur v1

Here we can see the different lobes we got from Fur v1.

But the medulla contribution to the final look was weighted by an 
extra parameter, something like “Medulla Intensity”, which had a 
non-physical meaning compared to what we really wanted which 
was a “Medulla Radius”.



Fur v1 vs Fur v2

And this led to Fur v2, which you can see in the image on the right.

As mentioned, we wanted to control medulla contribution not as a weight of medulla lobes, but 
literally controlling the size or radius of the medulla, as that would gave us much more correct 
color attenuation. For this goal we wanted our shader to emulate a second cylinder, simulating 
the medulla core inside the cortex, acting as a scattering medium with actual radius. This is 
known as the Double Cylinder model and was suggested by Yan in his 2015 paper.

We also wanted to control the light scattering, by specifying it as forward, isotropic, or 
backward. Ultimately, the goal was to get closer to the parametrization provided in the Yan 
2017 paper.

Linking both cylinders back the the structure of fur:

The outer cylinder can vary with a cuticle layers parameter, adjusting the ratio between the 
reflected and refracted light.

The inner cylinder represents the medulla. It doesn’t absorb light significantly, but scatters light 
when light travels inside. 

And between these two cylinders is the cortex, which simply absorbs light.



During the development of our shader, it was important to match 
the shading to a real geometric ground truth. 

On the left is actual modeled mesh geometry with a glass shader 
assigned to it. There are actually two nested geometries; the inner 
one representing the medulla.

On the right is a curve with our custom shader applied. Hopefully 
you agree that the look matches pretty closely.

Inside the red box we discard the outer shell and only visualise the 
inner medulla. It’s subtle on this slide but this isolation tells an 
interesting story in the next slide.



Medulla Radius

Being able to control the medulla radius gave us the ability to 
change the look quite dramatically. Here you can see the impact of 
increasing the radius from left to right, again highlighting just the 
medulla in the red box. On the left we have a very narrow medulla; 
on the right the medulla takes up almost the entire curve.



According to Yan 2015, 2017 research papers medulla 
behaves very much like a volumetric medium.



Light Propagation in Volumes - Radiative Transport Equation

Let’s consider the radiative transport equation, which represents the 
distribution of radiance in volumes and try to understand which 
parts of it could be considered for medulla simulation. 



Light Propagation in Volumes - Radiative Transport Equation

We got rid of emission, and merged together absorption and out-
scattering into the extinction coefficient.



Now, let’s represent this in the Volumetric Rendering Equation
form.



Volume Rendering Equation

Here we have two important components:

The first exponential member of the integral is Transmittance which 
is responsible for light attenuation and includes both absorption and 
scattering coefficients called also extinction factor.

And the second member which includes phase function is 
Scattering.



Looking at this diagram we have to apply a transmittance formula 
for each part of the path for each lobe keeping in mind that cortex 
and medulla has different absorption coefficients and cortex doesn’t 
scatter the light mostly behaving like a glass. 

Medulla behaves like a volume, that means that the radius of 
medulla and it is absorption coefficient as well as the width of curve 
affect the final color.

And if absorption coefficients is something that is based on the 
input color and then converted into absorption coefficients for both 
cortex and medulla as the initial values. 

In-scattering component is quite tricky to simulate. 



Although scattering is happening on the particle level and 
phase function is the angular distribution of light intensity 
scattered by a particle at a given wavelength due to the 
particle/wave duality of the light we decided to generalize 
Henyey-Greenstein phase function to the scale of curve and 
don’t take into consideration multiple scattering inside the 
medulla. 

That kind of approximation became the main idea in our 
medulla shading.



Phase Function - [0; 1)

So here you can see how the phase function affects the look of the 
curve. The value changes from 0 to 1 from left to right. For fur 
medulla the phase function is positive, so the scattering is either 
isotropic or has a forward direction.



Phase Function  (g) - [0; 1)

Here we similarly demonstrate how the medulla’s phase function 
affects bunches of hair. As g increases, more light goes straight 
through.

Although there is no scattering at the particle level, there is still a 
scattering on the broader groom level between fibres which we can 
control using phase function. 



Local Scattering  - [0; 1]

There are some difficulties to introduce visual density of a groom which would made a 
groom less scattered and more diffusive. In the volume case, we can set the scattered 
distance shorter (the distance between particles), make it denser (when the scattering 
distance is ~0 the volume behaves diffuse-like), but it is quite undesirable to increase 
the density of the groom as it will change the look of the character and increase 
memory consumption and we can’t control scattering on particle level due to our 
generalisation. 

That is why we introduced Local Scattering parameter which is a blend between 
phase function and diffuse. Such a combination is supposed to simulate local 
scattering properties of the medulla, making it more dense visually. We can use it in 
both cases: when groom should look more denser and when scattering distance 
should be shorter. 

Here you can see how look changes when we change a Local Scattering of the 
medulla from pure scattering behaviour - left, to pure diffuse - right.
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Here you can see how look changes when we change a Local Scattering of the 
medulla from pure scattering behaviour - left, to pure diffuse - right.



Curve thickness and overall fur density affects the transmittance
and scattering and, by extension, the final colour. Our artists may
want to decouple the geometry and shading, controlling each
individually, and so we exposed a curve width parameter in the
shader itself. The image here demonstrates, from left to right, the
effect of emulating increasing width via the shader while leaving the
geometry as-is. You can see shifts in colour, saturation and
brightness.



In our new shader, colour is no longer picked up by a diffuse 
reflection but, rather, accumulates as the result of scattering 
events within the medulla inside the fur. In short, it’s gone 
from a surface effect to a volumetric one.

The colour we achieve comes from absorption in cortex and 
scattering in the medulla across the multiple bounces. 



Specifically, we get colour in real hair because of the 
presence of a substance called melanin mostly in the cortex 
layer.

Eumelanin causes hair to be brown/black. Pheomelanin 
causes hair to be red.

Rather than letting artists pick random colours for fur, we 
provided them with a swatch like this, which let them specify a 
colour appropriate to an actual melanin concentration value …



But that brings us back to this single-strand vs fur-ball 
comparison, and the obviously different appearance of each. 
Our artists knew what colour they wanted the final result to 
look like but, given that it resulted from complex volumetric 
scattering in a multi-bounce lighting situation, it wasn’t 
obvious how all the equations should be seeded.



We’re not the first to observe this. The 2016 paper by Disney 
basically describes the same thing. The artists at Disney 
wanted to match the colour of fur to the surface colour of 
spheres by specifying a common input colour - shown in the 
third row. The team worked out the math that internally would 
generate the colours in the fourth row which, when used to 
drive their fur shader, would give the visually desired result.

We went through a similar process with our fur shader. And 
it’s complicated … there are a number of factors that affect the 
colour of the fur volume. Fur density can drive rich saturated 
colours or pale muted colours.



The number of light bounces affects the final colour too. In 
this image we have 0, 2, 4, 6, 8, 10, 12 bounces from left to 
right. Not only does the fur get brighter in the right images, it 
also gets more reddish-orange. 

In the end, we rendered the bulk of the show including The 
Lion King with 8 to 10 bounces of light, and calibrated our fur 
shader accordingly.



We were really concerned about performance and energy 
conservation.

We utilized a multiple importance sampling technique based 
on each lobe’s contribution, and the performance in general 
was 15%-30% better than a similar look with PxrMarschner, 
depending on shading parametrization and lighting 
environment.



A huge amount of attention was paid to energy conservation during the 
development of our shader. This was one of, if not the most important 
improvements we made, ensuring that the sum of all the lobes was normalised
and well balanced. 

On the left there is a curve which matches a white background almost 
perfectly. Just to the right of it is the same curve but isolated against a black 
background. And on the right is a furry sphere ball where tips of the curves 
perfectly matches to the background and some occlusion happens towards the 
roots. This is the typical furnace test and shows we’re not getting any 
inappropriate glowing or darkening.

As a result we’ve got an ability to render white fur without any difficulties. Our 
lookdev team were really excited about this for another show we were working 
on at the same time. Achieving this effect was quite hard before using 
Marschner model where the color was set by diffuse lobe.



Overall we have 7 fiber lobes R, TT, TRT, TRRT, Rs , TTs, TRTs which 
allow us to render Fur physically correct and in energy conserving 
manner. We output them to AOVs using LPEs.

Besides that diffuse lobe was introduced a top of this to simulate 
dust and dirt

Extra specular lobe to simulate wetness

And extra input for iridescence to render feathers  



Here’s the full evolution of our fur shaders over the last 5 years. On 
the left is the flat ribbon-like curve shader that we used on The 
Jungle Book; in the middle is our Fur v1 shader that we used on The 
Lion King, with the nice cylindrical look; finally, on the right is our Fur 
v2 shader that has recently been rolled out into production, 
complete with the medulla scattering core.



And I’ll close by showing the same comparison in a slightly more 
interesting context than a single fur strand. Again, the left-most 
image is using flat ribbon curves, the second image uses Fur v1, the 
third image uses Fur v2, and the rightmost image is Fur v2 with 
textured albedo. 



And that takes us to where we are today.

Allowing look-dev artists to work with ad-hoc shading networks 
gave us the ability to do really interesting things with 
lookdevelopment.

It also meant we were often re-inventing the wheel on every show, 
even for commonly used materials such as skin, cloth and hair.



It also led to inconsistencies when having to incorporate that work 
into final lighting.

This is illustrated above where the motorcycle on the right is 
suppose to look like the one of the left.



Using the tools available to them, lighters would often make 
shading and lighting adjustments within their scene to compensate. 

Here I’ve used light-linking along with various adjustments to the 
hue, saturation and even the specular contribution of the light in 
order to get a closer match on the two motorcycles. You can see 
the impact of these lighting adjustments in the reference spheres. 



Over the last few years we’ve built up an all encompassing uber-
shader we’ve referred to internally as the “Asset Shader”. Originally 
inspired by Disney’s principled shading work, we set out to create a 
general purpose material which could handle nine out of ten of all 
our look-dev needs. 



While the foundation for this uber-shader is a shading network, the 
user experience is presented within Katana as a hierarchy of 
parameters. Utilizing all of the available lobes within PxrSurface and 
offering several layers of overrides from which to drive the 
appearance of multi-layered materials.



We additionally incorporated material presets, building up a series 
of parent and child materials from which we could automatically 
apply look-dev and get production-ready results quickly. 

This automatic system relied on two inputs being well defined prior 
to the look-dev stage, first the tagging of objects with a material 
type and the second being appropriately painted texture maps for 
that material. For example in order to reveal a metal layer under a 
painted layer, the material would look for a predefined texture map 
used to mask the painted layer.



The use of the Asset Shader and its presets helped unify a lot of our look-dev 
in lighting scenes, but its complexity and associated compute cost became 
problematic - while the user-interface could be simplified with conditional 
widgets that could hide shading parameters that were not being used, we still 
ended up a large number of parameters for even relatively simple single-
layered materials.

Further concern was that large portions of shading network itself were being 
always being evaluated even in these simple materials. Attempts to optimize 
the logic of the shading network didn’t result in significant improvements and in 
production cases where the compute cost became problematic, we optimized 
materials with scripted operations that disconnected sections of the shading 
network or replaced the troublesome shaders with heavily simplified versions 
of those materials.



One of the main problems with version one of the Asset Shader was 
its top-down approach to building the shader. The following 
screenshot showing the node graph used to create the material 
presets, the nodes highlighted in yellow contain the shading 
networks that make up the foundation of the Asset Shader.



Version two was designed to address this, to build the shader from 
the ground-up in a more dynamic and procedural way while still 
maintaining a consistent structure and user interface when it came 
to layered materials.

Within Katana we developed a supertool (seen along the top) that 
would allow a look-dev artist to dynamically build materials, creating 
both the shading network and the parameter interface for the artist. 
The user never directly interacting with the shading network itself.



This now allows look-dev artists to create individual shading layers 
as presets that can be combined together with masks, here the 
layering operation is purely horizontal and utilizes a fixed vertical 
stack of lobes.



Shaders can still inherit from parent shaders - allowing users to 
define child shaders which can add or subtract layers as needed, 
making it easy to add layered variants to existing materials.



The resulting user interface also becoming a lot more 
straightforward and easy to manage - even when increasing the 
number of layers.



This new system does allows artists to create larger number of 
layers than we previously allowed in the Asset Shader.



In practice we’re hopeful that lookdev artists will want to work with 
fewer layers and that the overall number of shading nodes that 
make up an asset will go down.



As we start rolling version two into productions, the render times 
comparisons we’ve done between version one and version two 
have reduced by around 20%.



In the best case examples we’ve seen render times drop from 
around six hours to two hours - a two-thirds reduction in rendering 
cost.



Looking ahead, we continue to push for more physically accurate 
(or at least physically motivated) effects in our shading and 
rendering. 

We continue to have internal discussions about layered materials, 
especially where it concerns energy conservation and balancing 
light contribution among substrate layers.

And although we’ve moved away from additional BXDFs such as 
cloth, glass and particle, cloth is one area we are likely to revisit 
soon, especially as clothing becomes more realistically modelled as 
fibres rather than as textured subdivision surfaces. 

Lastly, with increased confidence in our materials, we’re taking an 
increased interest in how we describe the lights that illuminate our 
world, and the cameras and sensors that consume this illumination.



Over the last few years we’ve worked on a few films which have 
required the exchange of assets between visual effects studios. 
While model and texture data is often straightforward and easy to 
deal with - the exchange of look-dev data is often little more than 
visual references such as renders and movies from which to try 
match the look. This can often be complex and time-consuming 
process to translate artistically. 



This translation is frustrating as the language of look-dev among studios and 
renderers is more akin to different regional dialects than it is a number of 
entirely different languages - the common building blocks for processing 
signals in lookdev have long been well established in shading languages such 
as OSL, where terms such as gamma, exposure and remap are the same 
wherever you go. 

Even when discussing BXDFs where the differences in implementation are 
stronger, the language of diffuse, specular and subsurface is pretty common.

The example shown is a translation of an Arnold scene (left) into a RenderMan
scene (right). The end result is remarkably similar and gives us increased 
confidence that sharing of look-dev will soon become as straightforward as 
sharing geometry and textures.

Realistic head scan courtesy of Infinite Realities via Creative Commons.
https://ir-ltd.net/portfolio/infinite/

https://ir-ltd.net/portfolio/infinite/


This portability doesn’t just influence external exchange, often 
internally within the studio we have cases where doing the look-dev 
early and being able to use it under multiple contexts has huge 
benefits. One of the major goals in our virtual production work is to 
get lighting and materials representation closer in approximation to 
the final frame - allowing filmmakers to make more up front 
decisions about the work when filming.



We are forming an opinion regarding technologies such as 
MaterialX and MDL. The above example illustrating MDL materials 
available with V-Ray (left) and our work on an MDL implementation 
in RenderMan (right).



In the last year, we’ve heavily discussed not just how physically 
based shading plays a part in our work - but also how lights, lenses 
and cameras play a part in the verisimilitude of our physically-based 
rendering.



Outside a handful of rare situations, we’ve traditionally avoided rendering with lens effects such as distortion or depth of field, instead 
utilizing compositing techniques to artistically reproduce the look and feel of a real lens. In the rare cases we have rendered lens effects 
we’ve used standard thin-lens models to represent those effects.

Recognizing that a real-lens can have both a strong and subtle impact on the look and feel of a photographed image and that a lot of 
very specialized engineering and design goes into a real lens - we were keen to explore what a more accurate lens model would give us 
over the thin-lens model and so earlier this year we implemented “Sparse high-degree polynomials for wide-angle lenses” (Emanuel
Schrade, Johannes Hanika and Carsten Dachsbacher, 2016) as a projection plugin in RenderMan.

The results we got were certainly impressive and much of the lens effects produced would be difficult to achieve with current
compositing tools. The biggest concerns here are both practical and artistic - needing additional render time in order to adequately 

sample the effect and also being very difficult to artistically control. In the image presented we see a render through a toy lens, while this 
nicely portrays the characteristics of that particular lens, it is accurate to a fault in that no part of the image is sharply in focus. For realistic 
integration of cg elements into a live-action plate this may be desirable use of a real lens - but less desirable if the creative intention is to 
capture the feeling of the lens rather than all it’s physical characteristics.

{ VIDEO DIALOGUE }
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The switch to physically based shading has meant over the years 
our lighting has become more spatially accurate to the geometry of 
live-action sets and locations. However all of our illumination values 
are still relative to the live-action plates we use rather than absolute 
photometric units.

Spectral rendering is also an area where we can see obvious 
benefits and improvements to our shading and rendering, 
particularly in the case of digital humans where even subtle 
improvements in shading can dramatically increase the realism and 
our emotional connection to the resulting image. While we’ve yet to 
cross that threshold the arguments for pursuing more physically 
based illumination and spectral precision in production rendering 
are gradually becoming stronger.



This work is always a team effort - special thanks to the following
people for their contributions to the world of physically based
shading at MPC Film in the last year and all of those who have
contributed to lookdev and shading at MPC Film in years prior.



And thanks to *you* for your attention. It’s always wonderful for us 
to have the opportunity to share a bit of the history and magic that 
goes into MPC’s movie making process, and I hope you enjoyed the 
story. 

(From us all - good morning, afternoon, evening or night)

Keep safe!



THE DELETED SLIDES

During the process of producing the video presentation for this talk 
we made some edits in order to keep within 30 minutes. 

Throughout the speaker notes you’ll see mention of VIDEO 
DIALOGUE, this contains both the narration used in the final video 
along with the original intended narration.

This edit also resulted in some slides being cut completely from the 
final video edit. We have included these slides here with context to 
where they originally appeared.



Because the width as well as the density of the groom affects 
the final result a lot, we have absorption scaling for both 
cortex and medulla as well as a global width scaling which 
affects overall groom.

{ This slide originally appeared after slide #51 }



We support layered materials with Fur2 through the use of OSL
which allows us simulate undercoat layers - we are just starting to
roll this out now.

When it comes to furry characters, there are aspects of the texturing
workflow that we feel could be improved. While we currently
transform fur colours into melanin concentrations within Fur2, we’d
like to directly paint concentration values inside Mari - rather than
colours picked from a swatch - so artists can get a better idea of the
shaded result while painting.

With recent improvements in interactive rendering, we’d like to also
look at bringing Fur2 directly to our texture artists in Mari, offering
them the ability to see the shaded results while painting.

We’d like to fully sample the medulla scattering as a volumetric 
ground truth and compare against our own approximated model 



and any future research in fur shading.

{ This slide originally appeared after slide #79 }



With physically based rendering, we still occasionally get requests 
to bend the laws of physics in order to make a shot work - be it 
changing what object is reflected in a window or making the 
shadows go in the wrong direction. 

We’ve also seen an industry trend with productions now utilizing 
non-photoreal rendering technique in order to create unique 
graphical styles of animation and is an area we’ve taken a mixed-
media approach towards investigation and how we would render 
different art mediums such as pencil line work, clay modelling and 
watercolours.

{ This slide originally appeared after slide #83 }



The use of real lenses also brings up questions about what level of 
control we offer: is it simply the physical controls over aperture, 
focal distance and in the case of a zoom lens control over focal 
length?

Or do we open it up and allow end-users to modify existing lenses 
or even create their own? 

Even without a background in optical engineering, given the right 
tools and the ability to make interactive rendering iterations it may 
be possible for a user to create interesting lens effects on their own 
that may serve a creative visual effect that isn’t based in reality.

{ This slide originally appeared after slide #85 }


